В изученном диапазоне значений степени полимеризации эфиров целлюлозы видно, что она в большей мере влияет на разрывное удлинение, чем на прочность пленок.

Прочность на разрыв и относительное удлинение пленок, полученных из АЦ, выделенного из модифицированной древесины и затем отбеленного, и прочность пленок из промышленного ТАЦ соизмеримы.

Таким образом, в результате проведенных исследований показана принципиальная возможность получения высокозамещенных эфиров целлюлозы из древесины нетрадиционным способом без предварительного выделения целлюлозы. Эфиры целлюлозы могут быть выделены из модифицированной древесины с выходом 98...100 % от теоретически возможного и степенью чистоты более 97 %.

Выделенные эфиры целлюлозы обладают пленкообразующими свойствами. Полученные АЦ пленки, имеющие высокие прочностные характеристики, не уступают пленкам, из промышленного АЦ.

СПИСОК ЛИТЕРАТУРЫ

[1]. Barkalow D.G., Rowell R.M., Joung R.A. A new approach to the production of cellulose acetate // Polym. Mater. Sci and Eng.: Proc. ACS. Div Polim Mater. - Spring Meet., Denver, Colo' 87, Waschington, D.C. - 1987. - Vol. 57. - P. 52-56.
[2]. Rowell R.M., Joung R.A. A new approach to the production of cellulose acetate // Abstr. Pap., 194 th ACS Nat. Meet. (Amer. Chem. Soc.) - New Orleans, Waschington, 1987. - P. 1061.

Поступила 26 сентября 1996 г.

УДК 676.16.023

И.С. ГЕЛЕС

Петрозаводский государственный университет

Гелес Иосиф Соломонович родился в 1933 г., окончил в 1956 г. Ленинградский технологический институт, кандидат технических наук, старший научный сотрудник Петрозаводского государственного университета. Имеет около 300 печатных трудов в области научного обоснования и разработки экологически чистых ресурсосберегающих технологий при использовании древесной биомассы, применения отходов древесного сырья для очистки сточных вод различных производств.

К ВОПРОСУ ИСПОЛЬЗОВАНИЯ СУЛЬФИТНЫХ ЦЕЛЛЮЛОЗ В СВЯЗИ С ИХ «ОБЕССМОЛИВАНИЕМ»

Разработаны основы технологии, позволяющей без применения ПАВ и традиционных отбеливающих реагентов в значительной степени удалять экстрактивные вещества без существенной потери белизны целлюлозы и использовать сточные щелочные воды для получения варочных растворов.

Technological basis has been developed allowing to withdraw extractives to a considerable extent without applying surface-active substances and traditional bleaching reagents not loosing pulp whiteness and to use waste alkaline waters for obtaining cooking solutions.

Ранее нами [4] была теоретически обоснована и экспериментально доказана возможность получения сульфитным способом из безъядровой древесины сосны небеленой целлюлозы с повышенной белизной и меньшим содержанием остаточного лигнина по сравнению с еловой. Белизна небеленой сосновой целлюлозы составляла 58...71 %, у значительной части образцов - 63...65 %, что в среднем существенно выше, чем у древесных масс и небеленой сульфитной целлюлозы из ели, белизна которых колебалась в пределах 54...61 % [1, 5]. Этими значениями лимитируется в основном белизна газетной бумаги. Для ее повышения применяют специальные меры, в частности используют полубеленую и беленую сульфитную целлюлозу и др. Это усложняет и удорожает производство бумаги подобного композиционного состава, конечная продукция из которой предназначена часто для разового пользования. По нашему мнению, введение в композицию этого полуфабриката из сосны повысило бы белизну бумаги, а еловая древесина могла быть направлена на производство механических древесных масс, что в итоге сказалось бы на эффективности производства. Однако небеленая сульфитная сосновая целлюлоза отличается от аналогичной еловой большим содержанием смол и жиров. Следует признать, что, несмотря на многолетние и многочисленные работы по снижению содержания экстрактивных веществ (ЭВ), эта проблема остается актуальной. В значительной степени она связана с использованием свежезаготовленной древесины [11, 13]. Если раньше основным мероприятием по снижению как общей, так и «вредной» смолистости считалась выдержка баланса в штабелях в течение нескольких месяцев, то в последние годы эту проблему решают за счет использования различных добавок в ходе проведения основных технологических процессов. Так, рекомендуется вводить смеси ПАВ при варке [2], промывать небеленую целлюлозу в присутствии добавок [9], обрабатывать ее в щелочной среде с ПАВ, гипохлоритом и др. [7, 10].

Поэтому для применения небеленой целлюлозы из сосны необходимо преодолеть указанные затруднения. Однако, как показали опыты, содержание ЭВ удается существенно снизить даже путем простой щелочной обработки. На такую возможность применительно к сосновой целлюлозе указывали авторы работы [6]. Согласно нашим данным, при щелочении одновременно происходит снижение содержания ЭВ, степени делигнификации и белизны (табл. 1). Причем такая закономерность характерна для небеленой сульфитной целлюлозы из разных пород древесины. Опыты подтвердили также мнение [3] о худшей «обессмоливаемости» целлюлозы из березы. Таким образом было установлено, что при щелочном воздействии в значительной степени теряются преимущества небеленой сосновой целлюлозы.

Таблица | Характеристика небеленой сульфитной целлюлозы в процессе щелочения

Целлюлоза	Степень де- лигнификации	Белизна, %	Снижение белизны, %	Доля ЭВ, %	Снижение доли ЭВ, %
Еловая: Кондопожского ЦБК	27,1 27,0	58,6 50,2	14,30	1,89 0,77	59,2
смесь	39,9 37,9	62,1 58,6	5,64	1,48 0,80	45,9
Выборгского ЦБЗ	37.7 37,3	64,0 60,4	5,62	1,72 0,60	65,1
Ляскельского ЦБЗ	<u>56,1</u> 50,6	<u>51.8</u> 51,2	1,16	1,34 0,74	44,8
Сосновая лабораторной варки	20,7 17,3	60,8 55,0	9,56	1,29 0,41	68,1
	18,5 14,9	65,6 63,4	3,36	1,91 0,73	61,8
Березовая лабораторной варки	20,2 16,0	45,5 40,5	11,00	1,61 1,03	36,6
	25,1 19,4	40,1 35,1	12,50	1,86 1,31	29,4

Примечания: 1. В числителе приведены данные для образцов исходной целлюлозы, в знаменателе — для целлюлозы после щелочения (расход NaOH — 1% от исходной абс. сухой массы). 2. Здесь и далее, в табл. 2-4, доля ЭВ определена в спирто-бензольной среде (соотношение 2:1).

Перед нами стояла цель разработать технологию «обессмоливания» небеленой сосновой целлюлозы с сохранением белизны или потерей не более 5 % (относительных) от ее исходных значений. Кроме того, в процессе обработки не следовало применять ПАВ и традиционные отбеливающие реагенты (хлор, гипохлорит, перекиси и др.) и направлять сточные воды на очистку. Эти важные ограничительные требования должны были предупредить дополнтельную нагрузку на очистные сооружения и окружающую среду.

Для приближения к реальным условиям и предотвращения потерь ЭВ использовали только свежезаготовленную сосну. Для получения небеленой целлюлозы с повышенной белизной выбирали деревья в возрасте не старше 50 лет (обычно 35–40 лет), что обусловлено двумя обстоятельствами: во-первых, в этот период проводится одно из основных лесохозяйственных мероприятий — рубки прореживания, в результате чего образуются су-

щественные объемы древесного сырья именно для химико-механической переработки; во-вторых, на Северо-Западе европейской части России как раз в этом возрасте особенности морфологии трахеид и химического состава (отсутствие заметного количества «ядровых» веществ) у сосны создают предпосылки получения небеленой сульфитной целлюлозы повышенной белизны, что уже отмечалось выше.

Другим видом сырья, использованного в экспериментах, являлась технологическая щепа из отходов лесопиления сосны, представляющая собой, как известно, в основном заболонь, отвечающую указанным требованиям. Щепу получали на промышленной рубительной машине, сортировали на крупную (более 30 мм) и мелкую (менее 5 мм) фракции. Средние пробы щепы хранили в полиэтиленовых мешках. Варки вели используя кислоту Кондопожского ЦБК.*

На основании многочисленных опытов были разработаны основы технологии, удовлетворяющей указанным выше требованиям. Она апробирована на небеленой сульфитной целлюлозе из сосны и лиственных пород. Нужно отметить, что белизна исходной сосновой целлюлозы колебалась от 54 до 67 %, значительно больший диапазон был у целлюлозы из березовой древесины (39 ... 59 %). Такой разброс белизны, по-видимому, связан с присутствием некоторого количества ядровых веществ, особенно фенольных компонентов у березы [12], хранением во влажном состоянии, использованием для варки производственной кислоты разного срока изготовления и др.

При специальной щелочной обработке, параметры которой находились в пределах значений, характерных для данной операции (концентрация массы, продолжительность, температура и др.), вводились некоторые добавки. При этом эффективность обессмоливания несколько снижалась, оставаясь на достаточно высоком уровне, а изменение белизны неоднозначно: в одних случаях она уступает первоначальным значениям, в других — даже превосходит их. Однако ее понижение не превышает 5 % отн., а получаемые значения позволяют использовать целлюлозу в композиции многих видов бумаг без дополнительной отбелки.

Понижение белизны в ходе разработанного технологического процесса происходило у образцов сосновой целлюлозы, имеющих повышенное ее значение. При белизне ниже 60 % наблюдается некоторый рост, достигающий 6 % и более (табл. 2).

Для большинства образцов сосновой целлюлозы достигнутое обессмоливание (23,7...49,3 %) можно признать удовлетворительным.

У небеленой сульфитной целлюлозы из березы указанная обработка вызывает аналогичные эффекты, хотя содержание ЭВ снижается в меньшей степени. Для целлюлозы из осины такое щелочение дало положительные результаты по обоим контрольным критериям – белизне и содержанию смол и жиров (табл. 2).

В экспериментах принимали участие младший научный сотрудник Г. М. Левкина, инженеры Ю. М. Клеманский, Т. В. Крутова, Е. С. Софронов.

^{7 «}Лесной журнал» № 6

Таблица 2 Характеристика небеленой сульфитной целлюлозы лабораторных варок в процессе специальной обработки

Целлюлоза	Степень де- лигнификации	Белизна, %	Снижение белизны, %	Доля ЭВ, %	Снижение доли ЭВ, %
Сосновая: сульфитная	17,6 13,9	66,2 64,5	-2,57	1,59 0,86	45,9
	17,5 16,2	63,4 62,0	-2,21	2,03 1,03	49,3
	40,2 37,1	65,1 62,6	-3,84	1,96 1,02	47.5
	9,4 8,6	57,1 59,6	+4,38	1,38 0,79	42,7
бисульфитная	30,0 26,6	61,3 61,9	+0,98	1,50 1,03	31,3
Березовая сульфитная	31,4 28,4	<u>51,9</u> 49,5	-4,63	2,22 1,70	23,7
	19,8 17,7	54,3 57,9	+6,64	1,90 1,37	27,9
Осиновая сульфитная	12,4 9,6	56,9 60,0	+5,45	1,25 0,66	47,6

Примечание. В числителе приведены данные для образцов исходной целлюлозы, в знаменателе – для целлюлозы, прошедшей специальную обработку.

В соответствии с исходными требованиями, воды от ступени щелочения следовало использовать в технологическом процессе, а не сбрасывать на очистные сооружения. Подобно щелокам от горячего облагораживания [8] указанные стоки были использованы для приготовления варочной кислоты. Результаты сравнительных опытов приведены в табл. 3. Интересно, что все варки на опытной кислоте, т. е. с использованием щелочных вод, дали небеленую целлюлозу с меньшим содержанием остаточного лигнина, несколько лучшей белизной, но с повышенным содержанием ЭВ. Таким образом, использование стоков от ступени щелочения для приготовления варочного раствора не сказывается отрицательно на результатах варки, а в щелоках наблюдается некоторое возрастание РВ.

Проведенные эксперименты показали реальную возможность использования безъядровой древесины сосны для получения небеленой сульфитной целлюлозы с повышенной белизной и значительно сниженным содержанием ЭВ. Одновременно установлено, что разработанная нами щелочная обработка оказывает аналогичный эффект на небеленую бисульфитную сосновую целлюлозу и сульфитную целлюлозу из лиственных пород древесины (табл. 3). Показано, что применение вод от щелочной обработки для получения варочной кислоты не приводит к негативным результатам, а по ряду показателей получаемая целлюлоза превосходит контрольные образцы. Эти эксперименты показали принципиальную возможность создания бессточной технологии «обессмоливания» целлюлозы с улучшенной белизной. Как уже отмечалось, предложенная технология не предусматривает применение каких-либо отбеливающих реагентов.

Результаты сравнительных варок

Таблица 3

	Выход массы, %		Степень	PB	Доля	Белизна,
Целлюлоза	сортиро- ванной	общий	делигнифи- кации	щелока, %	ЭВ, %	%
Сосновая:	49,65	50,3	28,9	1,87	1,20	61,4
сульфитная	48,3	49,5	27,0	1,97	1,44	60,8
бисульфитная	50,3	51,0	40,5	1	1,09	56,4
	50,1	51,1	34,8		0,99	57,4
Еловая	51.7	53,2	34,6	1,58	0,74	51,1
сульфитная	52,8	52,8	27,9	1,78	0,78	52,5
Березовая	54,8	54,8	26,5	2	1,24	43,8
сульфитная	52,0	52,0	18,7		1,47	44,3

Примечание. В числителе приведены данные при использовании контрольной варочной кислоты, в знаменателе – опытной.

Полученные результаты (см. табл. 1) отражают положительное влияние обычной щелочной обработки на содержание ЭВ и степень делигнификации. Эффективность этой операции на весь процесс традиционной отбелки проверена на образцах небеленой сульфитной целлюлозы из березы, у которых значительно труднее удаляются ЭВ. Это позволило (табл. 4) выбрать традиционную схему включающую хлорирование и гипохлоритную отбелку. Предварительное щелочение привело к ряду положительных эффектов: снизился общий расход активного хлора на отбелку на 8,4 %, возросла белизна целлюлозы на 2,1 %, достигая 86,9 %, степень обессмоливания составила 56,2 % против 37,3 % при обычной схеме (табл. 4). Указанная обработка не отразилась негативно на основных физико-механических показателях целлюлозы (табл. 5), у которой по сравнению с небеленой несколько снизились разрывная длина и сопротивление продавливанию, но возросли удлинение и сопротивление раздиранию, что имеет значение при получении бумаги для печати.

Таблица 4 Влияние щелочения на результаты отбелки березовой сульфитной целлюлозы

Вари- ант	Схема отбелки	Расход акт. хлора, % от исходной абс. сухой массы	Белизна, %	Содержание ЭВ, %	Снижение содержания ЭВ, %
1	Х-Щ-Г-Г-К	9,5	84,4	1,16	37,3
2	щ-хщ-г-к	8,7	86,9	0,81	56,2

Примечание. Исходная степень делигнификации — 28,0; доля ЭВ — 1,85 %.

Таблица 5 Показатели физико-механических свойств березовой целлюлозы

Показатели	Численные значения показателей целлюлозы			
	небеленой	беленой по варианту		
		1	2	
Продолжительность размола до 60° ШР, мин	25	29	29	
Разрывная длина, м	8140	7170	7030	
Удлинение, мм	4,28	5,74	5,95	
Сопротивление:				
продавливанию, кПа	395	325	330	
раздиранию, мН	538	630	610	
излому, ч.д.п. на 180°	2290	2340	2220	

Таким образом предложенная в бессточном варианте специальная щелочная обработка, позволяет значительно снизить содержание ЭВ и поддержать белизну небеленых целлюлоз. Она положительно влияет также на небеленую целлюлозу из лиственных пород.

СПИСОК ЛИТЕРАТУРЫ

[1]. Барбье М.К., Дессюро С., Жанкие С. Производство механической и химико-механической массы (характеристики полуфабриката и бумаги) //Бум. пром-сть. -1991.- № 11. - С.7-10. [2]. Воздействие добавок смесей ПАВ в процессе варки на обессмоливание сульфитной целлюлозы в промышленных условиях О.А.Зенина, Н.П.Шпензер, И.Н.Ковалева и др. // Химия и технология целлюлознобумажного производства: Межвуз. сб. науч. тр.- Л., 1988.- С.15-17. [3]. Выродов А.А. Получение беленой лиственной целлюлозы с малым содержанием смолы. //Хим. переработка древесины: Реф. информация. -1966. - № 18.- С.3-5. [4]. Гелес И.С., Левкина Г.М. Влияние морфологии трахенд сосны и ели на результаты сульфитной варки и свойства получаемой небеленой целлюлозы // Лесн. журн. -1994.- № 2.- С.96-102. - (Изв. высш. учеб. заведений). [5]. Крылов В. Н., Пузырев С.С. Определяющий фактор производства полуфабрикатов высокого выхода // Бум. пром-сть. -1988. - № 10. - С. 28-29. [6]. Кухникова М.С., Пен Р.З., Слесарева Э.В. Обессмоливание и отбелка сульфитной целлюлозы из сибирской сосны (Сообщение 2.) // Материалы Второй науч. конф. комплексной проблемной лаборатории СибТИ. - Красноярск, 1962.- С.3 -12. [7]. Миловидова Л.А., Прокшин Г.Д., Чертовская В.П. Эффективный способ снижения сорности и содержания смолы в целлюлозе // Бум. пром-сть. -1989.- № 10.- С.15-16. [8]. Погожева Т.А., Непенин Ю.Н., Порубова А.Т. Изучение стабильности сульфитной варочной кислоты, приготовленой на щелоках от горячего щелочного облагораживания // Материалы науч.-техн. конф. хим.-техн. ф-та. -Л., 1969.-С.66-73. [9]. Применение различных добавок при промывке сульфитной целлюлозы из сосны для снижения ее смолистости / Р.К. Боярская, Ж.К. Романенко, О.П. Гугнина, Н.И. Мифтакова // Совершенствование технологии производства сульфитной и сульфатной целлюлозы: Сб. науч. тр. ВНИИБ.- Л., 1988.- С.23-28. [10]. Состав отложений и возможные пути снижения смоляных затруднений в про-