стоянной нагрузки с временными // Строительная механика и расчет сооружений— 1985.— \mathbb{N}_2 1.— С. 3—6. [7]. ТУ 13-722—83. Доски конструкционные. Технические условия.— Введ. 01.01.84.— Архангельск: ЦНИИМОД, 1983.—12 с. [8]. Цветков А. К., Трубилов А. Г., Осъкина В. А. Нормирование прочностных характеристик ЦСП // Сб. науч. тр. / ЦНИИСК.—1989.— С. 36—38.

Поступила 2 июля 1993 г.

УДК 630*812

СРАВНЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ ПОКАЗАТЕЛЕЙ ДРЕВЕСИНЫ

В. Н. ВОЛЫНСКИЙ

Архангельский лесотехнический институт

В данной статье рассмотрены значения некоторых механических показателей древесины для оценки законов распределения статистических характеристик, изучения изменчивости средних величин, сопоставления данных для хвойных и лиственных пород, произрастающих на разных континентах. Такое сравнение позволяет получить важную информацию при проектировании деревянных конструкций, прочностной сортировке пиломатериалов и планировании лесоэкспорта.

В нашей стране с 30-х годов сложилась достаточно стройная система методов испытания малых чистых образцов древесины и был накоплен большой фактический материал по многим показателям практически для всех древесных пород. Эти данные были суммированы в Руководящих технических материалах [3], и оформлены в виде таблиц

Стандартных справочных данных [2].

Таблицы содержат 16 показателей для 167 пород древесины, произрастающих в различных районах СССР. Однако не для-всех пород указан полный набор показателей, поэтому нами в анализе использованы только 7: плотность ρ_6 , кг/м³; пределы прочности при сжатии $\sigma^{\rm cx}$, изгибе $\sigma^{\rm нэг}$, растяжении $\sigma^{\rm p}$ и скалывании τ , МПа; модуль упругости при изгибе E, ГПа, и боковая твердость T, МПа. Расчеты выполнены отдельно для хвойных (ель, лжетсуга, лиственница, пихта, сосна, тис) и лиственных (акация, береза, бук, вяз, граб, груша, дуб, железное дерево, ива, каштан, клен, липа, ольха, орех, осина, рябина, тополь, хурма, эвкалипт) пород. Все показатели прочности и упругости определены на образцах с базовым сечением 20×20 мм (при растяжении вдоль волокон — 4×20 мм).

Из представленных в [5] зарубежных данных заслуживают внимания сведения по породам, имеющим промышленное значение и произрастающих в США. Они содержат 10 показателей для 112 пород и их разновидностей, в том числе для 47 хвойных и 65 лиственных пород-Качественное отличие этого массива информации от ГСССД 69-84 заключается в том, что, согласно стандартам Американского общества по испытанию материалов (ASTM) испытания проводили на более крупных образцах с базовым сечением 51 imes 51 мм. Но в данных США отсутствуют значения прочности при растяжении. Поэтому для анализа выбраны только 6 показателей. Средние значения вариационных коэффициентов V [2, 5] показателей плотности, модуля упругости при изгибе, боковой твердости, а также пределов прочности при растяжении, изгибе, сжатии, скалывании соответственно равны 10/10; 20/22; 17/20; 20/-; 15/16; 13/18; 20/14 %. Изменчивость показателей, полученных в СССР (числитель) и в США (знаменатель), незначительна. Наименьшую изменчивость имеет плотность древесины, наибольшую — модуль упругости. Следует иметь виду, что изменчивость, мая вариационным коэффициентом, отражает не только природную изменчивость показателя, но и методические погрещности его определения (например, колебания влажности древесины, неточность установки образца, недостаточная жесткость приспособления и т. п.).

В табл. 1 дано сравнение методов испытаний древесины.

Таблица 1

-		* *	•
	•	Характеристики м	иетода испытаний
По-		* P (.)	
каза- тель	- (CCCP	CILIA
	!		
Рб		Образец размером 20 × 20 × × 30 мм;	Образец $51 \times 51 \times 51'$ мм;
E		$ ho_{12} = m_{12}/V_{12}$ Образец $20 \times 20 \times 300$ мм; L = 240 мм;	$\rho = m_0/V_w$ Образец $51 \times 51 \times 760$ мм; L = 714 мм;
		3- и 4-точечная схема нагру-	З-точечная схема нагружения
σ _ρ		жения Образец фигурной формы; площадь сечения 4 × 20 мм;	
σ _{изг}		скорость испытания 3,3 МПа/с Образец 20 × 20 × 300 мм; 3-точечная схема нагружения скорость около 1 МПа/с	Образец $51 \times 51 \times 714$ мм; 3-точечная схема нагружения і
σсж		Образец $20 \times 20 \times 30$ мм; скорость около 1 МПа/с	Образец 51 × 51 × 208 мм
τ	ļ	Площадь скалывания 4 20 × 30 мм; 1	Площадь скалывания 51 × 51 мм
, T	sý.	скорость около 0,01 МПа/с Диаметр шарика 11,28 мм; глубина вдавливания 5,64 мм	Днаметр шарика 11,28 мм; глубина вдавливания 5,64 мм

При сравнении методов следует обратить внимание на то, что в нашей практике допускается определять предел прочности и модуль упругости при изгибе по разным схемам — по 3- или 4-точечной. В стандартах США регламентирована только одна (3-точечная) схема.

В связи с тем, что размерность твердости в двух базах данных

различна, был выполнен перерасчет данных США с кН на МПа.

Для отечественных пород плотность при влажности 12 % пересчитана на базисную плотность по формуле

 $\rho_6 = 0.823 \rho_{12}$

Таблица 2

		Статистические карактеристики					
По- роды	Пока- затель	<i>M</i> _{cp}	V, %	A/m _A	Э/т _Э	n, wt.	Раз- ность, %
Хвой- ные Лист- вен- ные	Р6 Е ор очаг т Т Р6 Е ор очаг осж т Т	405/401 10,8/10,0 90,6/— 77,9/72,2 44,3/41,3 7,46/8,07 22,5/23,8 537/515 10,8/11,1 115,1/— 99,0/91,3 52,1/46,2 10,6/11,6 47,9/46,0	19,5/15,1 22,4/19,5 27,5/— 22,1/19,1 19,0/17,3 22,8/18,1 31,9/26,4 21,8/19,3 24,4/19,7 27,0/— 24,8/24,7 21,0/21,0 35,3/24,6 39,6/34,8	-0,71/-1,06 -0,70/0,18 -0,01/- -0,41/-0,99 -0,72/-0,87 -0,89/-0,41 -1,61/-0,49 0,31/0,58 -0,98/-0,16 -2,70/- -0,98/-0,39 -1,62/-0,70 -1,30/-0,46 -0,94/-0,61	0,19/—0,71 -0,54/—0,53 -1,25/— -0,32/0,12 0,09/—0,87 1,64/—0,71 -0,14/—0,40 -0,88/—0,26 -0,47/—0,71 1,35/— -0,47/—1,47 0,94/—0,97 -0,95/—0,85 0,58/—0,17	68/47 39/47 28/— 68/47 68/47 60/47 31/43 62/64 62/64 44/— 62/64 44/64 64/49	+1,4 +8,0 +7,8 +7,2 +7,6 -5,0 +4,2 -2,8 +8,4 +12,7 -13,0 +3,0

Примечание. Здесь и далее в табл. 3 в числителе приведены данные, полученные по методикам СССР, в знаменателе — США.

в предположении, что коэффициент объемной усушки составляет 0,5.

В табл. 2 приведены обобщенные статистические характеристики хвойных и лиственных пород СССР и США с целью оценки их изменчивости и характера распределения.

В табл. 2 приняты следующие обозначения: $M_{\rm cp}$ — среднее арифметическое; V — вариационный коэффициент; A/m_A — отношение ассимметрии к ее ощибке; \Im/m_{\Im} — отношение эксцесса кривой распределения к его ощибке.

Как видно из табл. 2, распределение всех величин подчиняется нормальному, закону, поскольку значения A/m_A и Θ/m_Θ не превышают 3.

Следовательно, можно утверждать, что при равенстве средней плотности древесины отечественные хвойные породы имеют более высокий модуль упругости при изгибе (на 8 %). Пределы прочности при сжатии и изгибе у насаждений двух стран существенно не отличаются.

Необходимо отметить тот факт, что для отечественных пород модули упругости при изгибе оказались одинаковыми как для хвойной, так и лиственной древесины. Для пород США наблюдалась заметная разница (на 11 %). Последний факт кажется более логичным, так как все пределы прочности для лиственных пород выше, чем хвойных.

Следует обратить внимание на то, что различие средней плотности хвойных и лиственных пород СССР и США незначительно и статистически недостоверно. В среднем отечественные породы на $7...12\,\%$ прочнее, однако это связано с масштабным фактором, т. е. с разницей в размере образцов. Для того, чтобы сравнение было более объективным, выполнен пересчет показателей отечественных пород с размеров l, b, h на увеличенные размеры L, B, H образцов поперечным сечением $51 \times 51\,$ мм². Согласно [1] и данных Ю. С. Соболева [4], расчетные зависимости имеют следующий вид: ,,

$$\frac{E_{l, b, h}}{E_{L, B, H}} = \frac{1 - 30 \frac{h^2}{l^2}}{1 - 30 \frac{H^2}{L^2}} \left(\frac{lbh}{LBH}\right)^{-0.024};$$

. для предела прочности при изгибе

$$\frac{\sigma_{I,b,h}^{\text{MST}}}{\sigma_{L,B,H}^{\text{MSF}}} = \frac{1 - 24 \frac{h^2}{l^2}}{1 - 24 \frac{H^2}{L^2}} \left(\frac{lbh}{LBH}\right)^{-0.050};$$

для предела прочности при сжатии

$$\frac{\sigma_{l,b,h}^{\text{CM}}}{\sigma_{L,B,H}^{\text{CM}}} = \left(\frac{lbh}{LBH}\right)^{-0.016}$$

Таблица 3

Породы	Показа- тель	Численное значение показателя
Хвойные	Е _{очзг} _{осж}	10,8/10,0 70,8/72,2 41,9/41,3
Лиственные	Е о ^{изг} о ^{сж}	10,8/11,1 90,0/91,3 47,3/46,2

Согласно вычислениям, масштабные коэффициенты для модуля упругости, предела прочности при изгибе и сжатии соответственно равны 1.00: 1.20 и 1.06.

Сравнение важнейших показателей с учетом масштабного фактора

представлено в табл. 3.

Таким образом, нет большой разницы в показателях древесных пород США и СССР. Естественно, что породный состав, представленный в двух базах данных, очень различен. Сравнение показателей в пределах одной породы по данным массивам информации некорректно из-за малых объемов выборки. Однако очень близкое совпадение средних величин, базисной плотности древесины пород СССР и США дало возможность сравнивать ее механические показатели. Полученные массивы информации в дальнейшем могут быть использованы для анализа взаимосвязи показателей между собой.

СПИСОК ЛИТЕРАТУРЫ

[1]. Волынский В. Н. Особенности проявления масштабного фактора при изгибе древесины // Лесн. журн.— 1990.— № 2.— С. 76—78.— (Изв. высш. учеб. заведений). [2]. ГСССД 69—84. Показатели физико-механических свойств малых чистых образов древесины.— М.: Госстандарт СССР, 1985.—36 с. [3]. РТМ. Древесина. Показатели физико-механических свойств.— М.: Госстандарт СССР, 1962.—48 с. [4]. Соболев Ю. С. Древесина как конструкционный материал.— М.: Лесн. промсть, 1979.—249 с. [5]. Справочное руководство по древесине / Пер с англ.— М.: Лесн. промссть, 1979.—544 с.

Поступила 29 сентября 1993 г.

УДК 674.053:621.934

О КРИТИЧЕСКИХ ЧАСТОТАХ ВРАЩЕНИЯ НАГРЕТЫХ В ЦЕНТРАЛЬНОЙ ЗОНЕ КРУГЛЫХ ПИЛ

С. В. ЕРШОВ

. : ЦНИИМОД >

"Подготовка плоских круглых пил к работе предусматривает операцию натяжения, которая заключается в создании начальных напряжений растяжения в периферии и сжатия в центральной зоне пилы. Обычно натяжение производят проковкой или вальцеванием, хотя возможны и другие методы, например, термопластическая деформация или автофретирование. Натяжение пилы увеличивает ее минимальную критическую частоту вращения, что, в свою очередь, позволяет снизить толщину используемых в данном станке пил или увеличить частоту их вращения [6].

Поскольку степень проковки пилы связана с рабочей частотой ее вращения, возникает вопрос о подготовке пилы под заданную частоту вращения. Эта проблема подробно рассмотрена в работе [4], где показано, что задача согласования степени проковки и частоты вращения пилы всегда имеет только прямое решение, т. е. для каждой пилы с определенным напряженным состоянием можно подобрать частоту вращения (включая ноль), при которой эта пила будет наиболее устойчива к внешним воздействиям. Невозможность в ряде случаев обратного рещения, т. е. подготовки любой пилы под заданную частоту вращения, объясняется естественным ограничением степени ее проковки — потерей пилой при проковке устойчивости по зонтичной форме. Напряженное состояние, при котором пила начинает терять плоскую форму, называется критическим. Пилы с таким напряженным состоянием крайне неудобны