

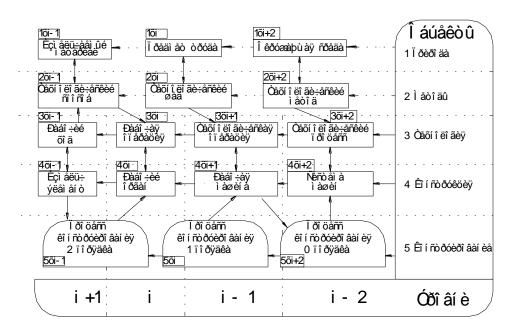
УДК 630*3.001

В.Н. Коршун

Коршун Виктор Николаевич родился в 1956 г., окончил в 1980 г. Сибирский технологический институт, кандидат технических наук, доцент кафедры проектирования лесного оборудования Сибирского государственного технологического университета. Имеет более 80 печатных работ в области проектирования технологических машин и САПР.

КОНЦЕПЦИЯ КОНСТРУИРОВАНИЯ ЛЕСНЫХ МАШИН

Предложена концепция конструирования лесных машин в новых экономических условиях на основе системного подхода к проектированию.


Ключевые слова: концепция, лесные машины, системный подход.

На современном этапе развития общества нет централизованного государственного обеспечения лесной индустрии новой техникой. Заводы лесного машиностроения переходят на средний и мелкосерийный выпуск техники на основе маркетинговых исследований. В то же время в хозяйствах сохранилось большое количество ранее выпущенных машин. Задача заключается в повышении эффективности их функционирования в условиях перехода к рыночным способам хозяйствования. Приобретение импортной техники нереально для небольших предприятий. Ставится насущная задача расширения номенклатуры выпускаемой отечественной лесной техники и ускорения сроков ее создания.

Реализация принципа гарантированного воспроизводства лесных ресурсов, который является основой лесного хозяйства, определяет параметры всех элементов системы машина — человек — среда, требует разработки машинных технологий с сохранением природного баланса региона. Принцип ограничения антропогенной нагрузки на среду требует от конструкторов выбора оптимальных нагрузок машин на почву, при которых не нарушается экологическое равновесие в природе [5].

Целью нашей статьи является разработка концепции конструирования лесных машин на принципах системного подхода и на базе компьютерных систем автоматизированного проектирования.

На рисунке представлена схема реализации системного подхода, которая включает в себя несколько уровней и объектов и учитывает все взаимосвязи между элементами системы машина – человек – среда. На ну-

левом уровне конструирования выбирают систему машин из существующего типоразмерного ряда по параметрам, которые рассматривают как элементы данной системы. В качестве технологической составляющей на данном уровне обосновывают технологический процесс, осуществляемый на основе технологического метода и выполняемый в окружающей среде (типоразмерный ряд лесных машин до настоящего времени не разработан) [4]. На данном уровне задействуют поисковые информационные системы. Если не находят приемлемого технического решения, то процесс конструирования переходит на следующий уровень.

На первом уровне разработку машины начинают от узлов и идут к выявлению облика требуемой машины, выполняющей соответствующую технологическую операцию при взаимодействии с предметом труда («сверху – вниз»). Конструктивные решения для элементов машины выбирают из библиотеки по основному конструктивному параметру, и только отсутствующие элементы детально прорабатывают [2]. По такому принципу построены современные системы автоматизированного проектирования (САПР), базирующиеся на основе отечественных программных комплексов [КОМПАС (АСКОН), T-FLEX CAD (АО «Топ Системы»), АРМ WinMachine и др.] и использующие современные технологии параметризации, ассоциативных сборок и управление проектами. Используют также зарубежные программные системы [Меchanical Desktop (AutoDesk), SolidWorks (Solid-Works Corp.), Mechanical Dynamics ADAMS и др.)], обладающие аналогичными возможностями, но лишенные библиотек конструктивных элементов, удовлетворяющих ГОСТ Р.

На втором уровне прорабатывают отдельные детали, выполняющие определенные функции. конструируют необходимые сборочные единицы. Проектирование осуществляют по схеме «снизу – вверх». САПР базируется на основе программных продуктов AutoCAD (AutoDesk, Inc.) и КОМПАС (АСКОН), которые существенно сокращают сроки проектирования и повышают качество конструкторской документации. Возможности данных программных продуктов примерно одинаковы. Методологической основой конструирования является объемное моделирование, позволяющее разрабатывать конструкторскую документацию на качественно новом уровне при сокращении сроков проектирования [3]. Суть данного подхода заключается в том, что вначале создают трехмерную модель объекта, максимально соответствующую оригиналу, а затем на ее основе разрабатывают конструкторскую документацию, удовлетворяющую требованиям ЕСКД. Описание объемной модели объекта проектирования в международном формате обмена данными моделей (ACIS ASCII-.set) передается в системы инженерных расчетов, основанные на методе конечных элементов и позволяющие выполнять статический, кинематический и динамический анализ конструкции, оптимизацию формы, материала и собственных частот детали, исследовать поведение конструкции при механических, термических и радиационных нагрузках. В настоящее время для таких расчетов используют программы: Ansys (ANSYS, Inc.), Nastran (MacNealSchwendler Software), Cosmos/Works (Structural Research & Analysis, Inc.) и др. К сожалению, отечественные разработки такого уровня нам неизвестны.

Системный подход предусматривает учет требований окружающей среды [1]. Анализ показывает, что наблюдается тенденция к усилению региональных особенностей при проектировании систем машин для леса. Такие принципы, в частности, предусматривают: 1) вариантность использования машин; 2) альтернативность принятых технологических решений и систем машин; 3) минимизацию топливно-энергетических, материальных и трудовых ресурсов; 4) оптимальное сочетание многооперационных и специализированных машин; 5) формирование адресной системы сервиса; 6) экологичность использования машин [6]. Выполнение указанных принципов требует от конструкторов разработки пакета лесоводственных требований к машинам, созданию типоразмеров по производительности, главным и определяющим параметрам, размерно-массовым характеристикам, комплектациям, способам агрегатирования, создания конкурентоспособной техники с учетом региональных особенностей лесного фонда и предмета труда.

Анализ существующих технологий и систем машин, применяемых в лесу, показывает, что формирование системы машин не отвечает принципам системного подхода, а включает только набор конкретных технологических модулей, адаптеров и технических средств для их реализации. К системе должны предъявляться технологические требования: непрерывность, параллельность, ритмичность, пропорциональность. Недостатки и отсутствие отдельных элементов в системе препятствуют полной механизации лесного комплекса, а основные параметры их ориентируют проектировщи-

ков на разработку технических средств, реализующих экстенсивный путь развития лесного комплекса. В последние годы наблюдается некоторая стабилизация роста количества номенклатуры машин. При проектировании лесозаготовительного и лесохозяйственного производств сложилась практика, когда в основу разработки технологии ложатся не почвенно-климатические, лесоводственные, экологические, экономические и организационные условия, а новая технология, рассчитанная только на внешний рынок, подгоняется под существующие машины, часто зарубежного производства, разработанные для эффективной работы в совершенно иных условиях. В 1995 г. на государственном уровне были узаконены новые нормативы давлений тракторов и лесозаготовительных машин на почву в зависимости от типа движителя (160 ... 170 к Π а для колесных и 50 ... 60 к Π а – для гусеничных тракторов). Ранее лесоводственные требования допускали давление на почву 20 ... 50 кПа. На наш взгляд, новые нормативы закрепляют достигнутый машиностроителями и конструкторами средний технический уровень $(45 ...65 \ k\Pi a$ для гусеничных машин и $140 ... 200 \ k\Pi a$ – для колесных машин), но не нацеливают разработчиков на повышение технических параметров машин.

Для реализации принципов системного конструирования в ближайшей перспективе необходимо разработать перечень зон и подзон механизации лесного комплекса, включить в них леса в зоне долговременной мерзлоты, бореальные леса, которые занимают более половины площади России, пригородные, городские леса и городские зеленые насаждения, территории, подвергнувшиеся интенсивному техногенному и антропогенному воздействию, природным катаклизмам. Следует обосновать номенклатурный ряд основных технических параметров машин и агрегатов, тип и класс энергоприводов и базовых шасси, создать рубрикатор и классификатор основных элементов лесных машин.

Таким образом, предлагаемые методики позволяют создавать конкурентоспособные машины.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Герасимов Ю.Ю., Сюнев В.С.* Лесосечные машины для рубок ухода: Компьютерная система принятия решений. Петрозаводск: Изд-во ПетрГУ, 1998. 236 с.
- 2. *Гуцелюк Н.А., Коршун В.Н.* Постановка задачи оптимального проектирования лесохозяйственных машин // Лесн. журн. -1984. -№ 5. С. 25–28. (Изв. высш. учеб. заведений).
- 3. *Коршун В.Н.* Основы автоматизированного проектирования: Объемное конструирование деталей на основе редактора AutoCAD: Учеб. пособие. Красноярск: СибГТУ, 2002. 128 с.
- 4. *Коршун В.Н.* Роторные рабочие органы лесохозяйственных машин: Концепция конструирования. Красноярск: СибГТУ, 2003. 228 с.
- 5. Состояние инженерно-технического обеспечения села и сельскохозяйственного машиностроения. М.: Изд. Гос. Думы, 1998. 78 с.

6. Эйдис А.Л., Базаров Е.Н., Черепахин А.Н. Проблемы и пути развития регионального сельхозмашиностроения // Тракторы и сельскохозяйственные машины. -1998. -№ 4. - C. 5–8.

Сибирский государственный технологический университет

Поступила 01.04.02

V.N. Korshun

Concept of Forest Machines Designing

Concept of designing forest machines in new economic conditions is proposed based on the system approach to designing.