

УДК 582.29

А.И. Шербакова, А.В. Коптина, А.В. Канарский

Поволжский государственный технологический университет

Щербакова Анастасия Игоревна окончила в 2010 г. Марийский государственный технический университет, магистрант кафедры лесной селекции, недревесных ресурсов и биотехнологии Поволжского государственного технологического университета. Имеет 1 научныую работу в области изучения вторичного метаболизма растений и их биологической активности.

E-mail: serbsik@gmail.com

Коптина Анна Владимировна окончила в 2005 г. Казанский государственный технологический университет, кандидат технических наук, старший преподаватель кафедры лесной селекции, недревесных ресурсов и биотехнологии Поволжского государственного технологического университета. Имеет более 30 научных работ и 1 патент РФ в области технологии натуральных лекарственных веществ, изучения их биологической активности и механизма действия, иследования вторичного матаболизма растений, микроорганизмов и человека.

E-mail: anna_koptina@hotmail.com

Канарский Альберт Владимирович родился в 1946 г., окончил в 1975 г. Ленинградскую лесотехническую академию, доктор технических наук, профессор кафедры лесной селекции, недревесных ресурсов и биотехнологии Поволжского государственного технологического университета. Имеет более 200 научных работ в области химической и биохимической технологии, получения и переработки целлюлозы, бумаги и картона, крахмала, адсорбентов и биологически активных веществ. E-mail: alb46@mail.ru

БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА ЛИШАЙНИКОВ*

Рассмотрены биологические особенности лишайников. Проведен анализ их биологического состава. Установлено, что лишайниковые вещества обладают широким спектром лекарственных свойств, включая противомикробные, противомикотические, противовирусные, противовоспалительные, обезболивающие, жаропонижающие,

-

^{*}Работа выполнена в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007—2013 годы» (государственные контракты № 16.552.11.7050 от 29 июля 2011 г. и № 16.552.11.7089 от 12 июля 2012 г.) с использованием оборудования ЦКП ЭБЭЭ ФГБОУ ВПО МарГТУ.

[©]Шербакова А.И., Коптина А.В., Канарский А.В., 2013

антипролиферативные и цитотоксические. Особый интерес представляет усниновая кислота, обладающая противораковой активностью.

Ключевые слова: лишайники, биоразнообразие, биологически активные вещества, биологическая активность.

Биологические особенности лишайников. Лишайники – это своеобразная группа живых организмов, тело (слоевище) которых образовано двумя организмами – микобионтом и фикобионтом, живущими в симбиозе. Микобионты лишайников представлены грибами, принадлежащими к классам аскомицетов и базидиомицетов. В качестве фитобионтов выступают зеленые и желто-зеленые водоросли, реже – цианобактерии [5]. Дуалистическую природу лишайников открыл швейцарский ботаник Симон Швенденер в 1869 г. [3]. Симбиотические (мутуалистические) взаимоотношения между компонентами лишайников сводятся к тому, что фикобионт снабжает гриб созданными им в процессе фотосинтеза органическими веществами, а получает от него воду с растворенными минеральными солями. Кроме того, гриб защищает фикобионт от высыхания [3]. Многие лишайниковые грибы и водоросли не живут в свободном состоянии [5]. Например, водоросль *Trebouxia* обнаруживается только в симбиозе с грибом. При этом лишайники отличаются от других групп организмов способами размножения, медленным ростом, отношением к экологическим условиям и др. [3], их метаболизм отличается от метаболизма его нелихенизированных компонентов [3, 5].

Благодаря своей способности расти на самых разнообразных субстратах лишайники широко распространены на земном шаре. Они встречаются почти во всех наземных экосистемах (почва, стволы деревьев, валуны и скалы). На сегодняшний день список лишайников насчитывает около 20 тыс. видов [3, 17], на территории России известно примерно 100 видов лишайников, не отмеченных в других странах [17].

В силу размеров территории Российской Федерации изучение лихенофлоры весьма затруднено и чаще носит региональный характер. К настоящему времени известно 3435 видов лишайников [17], их распространение по территории неравномерно. В центре Европейской равнины лишайники представлены 834 видами [17]. Например, биоразнообразие лишайников Кемеровской области определяется 1311 видами, Салаира — 671 видом, Красноярского края (Западный и Восточный Саяны) — 1318 видами, Республики Алтай — 1572 видами, Республики Хакасия — 1272 видами, Республики Тыва — 1222 видами [14], Республики Марий Эл — 394 видами (265 из них — на территориях НП «Марий Чодра» и заповедника «Большая Кокшага», 4 — занесены в Красную книгу РФ) [1]. В основном лишайники Марий Эл представлены родами Cladonia, Lecanora, Arthonia, Chaenotheca, Usnea, Bacidia, Peltigera, Caloplaca, Pertusaria, Bryoria, Melanelia [17].

Разнообразие лишайников велико, но, к сожалению, при рубке они являются отходами вместе с корой и ветвями. Однако лишайники с давних пор используются как лечебное средство, что обусловлено их биохимическим составом.

Биохимический состав лишайников. Основу оболочки гиф лишайников составляют углеводы, образующиеся при освобождении фотосинтетического углерода. В грибах данные углеводы превращаются в грибные полиолы — манит, арабит [5]. В гифах лишайников также обнаружены хитин (характерен для большинства грибов) и гомополисахарид лихенин, или лишайниковый крахмал [3, 9], а из азотсодержащих веществ — аминокислоты. Фикобионт лишайников продуцирует витамины [2, 3].

Лишайники обладают уникальной способностью извлекать из окружающей среды и накапливать в своем слоевище различные химические элементы, что влияет на их биохимический состав [3, 18]. Определение многих видов лишайников осуществляется с помощью качественных химических реакций, но, зная адсорбционные свойства лишайников, нельзя говорить об их принадлежности к разным видам, а не к экобиоморфам, меняющимся по составу в зависимости от условий местообитания. Так, группа ученых Тверского государственного университета, изучая динамику накопления экотоксиканта (окись азота) в слоевище лишайника *Нуродумпіа physodes* (L.) Nyl., пришла к выводу, что экотоксикант не только накапливается в слоевище лишайника, но и активно реагирует с его органическими компонентами (например, с белковыми молекулами) [8]. Кроме того, лишайники способны накапливать небольшое, но постоянное количество азота, не менее 70 % которого участвует в построение белковых молекул [8].

Вторичные лишайниковые вещества, на долю которых приходится до 5 % сухой массы, представляют собой безазотистые соединения фенольного характера, близкие по своей природе к дубильным веществам растений, но имеющие более простое строение. По одним данным [3], общее их количество достигает 270, по другим [19] — более 700, из которых около 80 встречаются только в лишайниках [3]. Впервые вторичные лишайниковые вещества обнаружил Пфафф в 1826 г. [9]. Но наибольшее изучение метаболитов в лишайниках началось после открытия пенициллина. Одна из проблем лихенологии — это неспособность микобионтов, изолированных из слоевища лишайников, синтезировать в культуре те химические соединения, которые они синтезируют с водорослью. Факты доказывают, что биосинтез лишайниковых веществ является результатом совместных усилий лишайниковых партнеров [14]. Некоторые биологически активные вещества лишайников представлены в таблице.

Биологическая активность лишайниковых веществ. С давних пор экстракты лишайников используются как лечебное средство, на что указывал еще Теофраст [3]. Лишайниковые вещества обладают широким спектром действия, включая противомикробное, противомикотическое, противовирусное, противовоспалительное, обезболивающее, жаропонижающее, антипролиферативное и цитотоксическое [23]. Во время Великой Отечественной войны в СССР была разработана методика получения из лишайников глюкозы [13]. Половина углеводов, содержащихся в слоевищах лишайников, представлена гомополисахаридом лихенином, а также изолехинином, обладающими как иммуномодулирующими, противоопухолевыми, так и гепатопротекторными свойствами [12].

	T
Биологически активное вещество	Вид лишайника
Атранорин (С ₁₉ H ₁₈ O ₈)	Большинство видов рода Anzia, Cladonia, Anaptychia ciliaris A. Speciosa, Asahinea chrysantha, Cetrelia cetrarioides, Evernia prunastri, Haematomma coccineum, Hypogymnia encausta, Parmelia acetabulum,
Вульпиновая кислота ($C_{19}H_{14}O_{5}$)	Cetraria juniperina, C. pinastri, Letharia vulpine
Гирофоровая кислота ($C_{24}H_{20}O_{10}$)	Большинство видов рода Umbilicaria, Cetraria delisei, Dactylina arctica
Норстиктовая кислота ($C_{18}H_{12}O_{9}$)	Cladonia subcariosa, Lobaria pulmonaria, Menegazzia terebrata, Parmelia acetabulum

Прос	должение	таблицы

	Продолжение таблицы
Биологически активное вещество	Вид лишайника
Пинастровая кислота ($C_{20}H_{16}O_{6}$)	Большинство видов рода Pseudocyphellaria, Rhizocarpon, Cetraria commixa, Cetraria cu- cullata, C. delisei, C. islandica, C. juniperina, C. oakesiana, C. pinastri, Letharia vulpine
Протоцетраровая кислота ($C_{18}H_{14}O_{9}$)	Cetraria islandica, Hypogymnia encausta, Parmelia caperata, Parmelia olivacea, Par- melia sulcata
Пульвиновый дилактон ($C_{18}H_{10}O_4$)	Большинство видов рода Candelaria, Candelariella, Pseudocyphellaria, Rhizocarpon, Cetraria commixa, C. cucullata, C. delisei, C. islandica, C. juniperina, C. oakesiana, C. pinastri, Letharia vulpine
Салациновая кислота ($C_{18}H_{12}O_{10}$)	Большинство видов рода Parmelia, Ramalina farinacea, Usnea comosa
Стиктовая кислота $(C_{19}H_{14}O_{9})$	Большинство видов рода Parmelia, Lecidea albocoerulescens, Lobaria pulmonaria, Menegazzia terebrata, Rizocarpon grande

	Окончание таблицы
Биологически активное вещество	Вид лишайника
Эверновая кислота ($C_{17}H_{16}O_7$)	Evernia prunastri, Ramalina polinaria
Эпанорин (C ₂₅ H ₂₅ NO ₆)	Большинство видов рода Candelaria, Candelariella, Pseudocyphellaria, Rhizocarpon, C. commixa, C. cucullata, C. delisei, C. islandica, C. juniperina, C. oakesiana, C. pinastri, Letharia vulpine
Фумарпротоцетраровая кислота $(C_{22}H_{16}O_{12})$	Большинство видов рода Cladonia, Cetraria islandica, Hypogymnia encausta, Parmelia conspersa, Parmelia olivace

Водно-спиртовые экстракты лишайников оказывают антибактериальное действие, в том числе и на *Mycobacterium tuberculosis*, вызывающих туберкулез у человека и некоторых животных [10, 12, 14].

Многие вторичные вещества лишайников (например, канарион, тамноловая кислота, скваматиновая кислота, вермикуларин, норстиковая кислота, баеомицезическая кислота, леканориновая кислота, барбатиновая кислота, усниновая кислота) обладают сильными гиполипидемическими и антиоксидантными свойствами, так как, благодаря своей фенольной природе, способны связывать токсичные свободные радикалы [22, 23].

Кершенгольц с соавторами рассматривал влияние биологически активных веществ (БАВ) лишайников на состояние крыс при их алкоголизации [6]. Экпериментально было показано, что комплекс лишайниковых БАВ при введении в 40 %-ную водно-спиртовую смесь в 2 раза снижает ее тимоэргическое

действие, почти полностью снимает постинтоксикационный эффект и в 6 раз уменьшает скорость формирования алкогольной зависимости при длительной алкоголизации животных [6].

Особый интерес среди лишайниковых веществ представляет усниновая кислота, которая, по одним данным [15], найдена в талломах 16 видов лишайников, 6 из которых растут в лесном растительном поясе (Cladonia deformis, Parmelia vagans, Thamnolia vermicularis, Usnea dasypoda, Usnea florida, Usnea hirta), по другим – примерно у 70 видов лишайников [14].

Усниновая кислота — это кислородсодержащее гетероциклическое соединение, по структуре относящееся к дибензофуранам. По внешнему виду — желтые моноклинные кристаллы; молекулярная масса — 344,33 а.е.м.; температура плавления — 194 °C; не растворима в воде, растворима в хлороформе, трудно растворима в этаноле [16]. Усниновая кислота впервые была получена в 1843 г. из лишайников *Ramalina fraxinea* и *Usnea borbata* [4].

Усниновая кислота обладает широким спектром действия:

противомикробным (эффективна против Candida orthopsilosis и С. Parapsilosis [29], метициллин-резистентного золотистого стафилококка Staphylococcus aureus [28], чувствительных и резистентных штаммов Mycobacterium tuberculosis, не вызывающих туберкулез штаммов микобактерий [30]);

синергист инсектицидов [11];

противораковым (в различной степени оказывает ингибирующее действие на A2780, HeLa, MCF-7, H1299, SK-BR-3, HT-29, HCT-116 p53(\pm), HCT-116 p53(\pm), HCT-116 p53(\pm), HL-60 и Jurkat раковые клетки человека в услових *in vitro* [21, 24, 31, 32];

противооксидантным и гепатопротекторным (используется в составе БАД для снижения веса) [25]);

антималярийным.

Недавние исследования группы бразильских ученых показали, что усниновая кислота является ингибитором гидроксифенилпируватдиоксигеназы в биосинтезе витамина Е в плазмодиях *Plasmodium falciparum*, вызывающих малярию [27]. Это открытие является крайне перспективным, так как малярия ежегодно вызывает около 350...500 млн инфицирований и около 1,3...3,0 млн смертей у людей [20]. Согласно ВОЗ, это число ежегодно возрастает на 16 % [7]. Самым распространенным медикаментом для лечения малярии сегодня, как и раньше, является хинин из коры хинного дерева, которая веками использовалась индейцами как жаропонижающее [26]. Наилучшим лечением считается основанная на артемизинине комбинированная терапия (артемезинин выделен из растения *Artemisia annua* – полынь однолетняя) [7]. Однако растущая устойчивость к противомалярийным препаратам распространяется

быстрыми темпами, что подрывает усилия по борьбе с малярией [7] и делает перспективным поиск новых лекарственных средств.

В связи с тем что лишайниковые вещества обладают широким спектром лекарственных свойств, включая противомикробные, противомикотические, противовирусные, противовоспалительные, обезболивающие, жаропонижающие, антипролиферативные и цитотоксические, их терапевтический потенциал еще недостаточно изучен, что сдерживает широкое производство на их основе фармацевтических препаратов и применение в медицине [23].

СПИСОК ЛИТЕРАТУРЫ

- 1. Богданов Г.А., Урбанвичюс Г.П. О разнообразии лишайников Республики Марий Эл // Флора лишайников России: состояние и перспективы исследований: тр. междунар. совещания, посвященного 120-летию со дня рождения В.П. Савича. 2006. С. 41-45.
- 2. Вершинина С.Э., Вершинин К.Е., Кравченко О.Ю. Анализ состава растительного сырья Cetraria laevigata Rassad. 1945 и С. islandica (L.) Ach/1803 (Parmeliaceae, lichens) // Вест. ИГСХА. 2010. № 41. С. 13–21.
- 3. Водоросли. Лишайники. Т. 3 / Под ред. М.М. Голлербаха М.: Просвещение, 2000. 487 с.
- 4. Гетероциклические соединения. Т. 2 / Под ред. Р. Эльдерфилда. М.: Иностр. лит-ра, 1954. С. 42–50.
 - 5. *Зенова Г.М.* Лишайники // Соросовский образоват. журн. 1999. C. 30–34.
- 6. Кершенгольц Е.Б., Шеин А.А., Кершенгольц Б.М. Комплекс биологически активных веществ, выделенных из лишайников методом CO_2 флюидной сверхкритической экстракции, и оценка его влияния на состояние крыс при их алкоголизации // Наука и образование. 2005. С. 74–80.
- 7. Малярия // Информационный бюллетень / ВОЗ. 2011. № 94. Режим доступа: http://www.who.int/mediacentre/factsheets/fs094/ru/ (дата обращения: 02.02.2012).
- 8. *Мейсурова А.Ф., Хижняк С.Д., Пахомов П.М.* Характер воздействия азотсодержащих поллютантов на химически состав *Hypogymnia physodes* // Вест. ТГУ. Сер.: Биология и экология. 2010. № 18. С. 129–136.
- 9. *Окснер А.Н.* Определитель лишайников СССР. Морфология, систематика и географическое распространение. Л.: Наука, 1974. Вып. 2. 284 с.
- 10. Пат. РФ № 2203081. Препарат Ислацет для профилактики и лечения туберкулеза и способ его получения / Е.Е. Лесиовская, Е.И. Саканян, Е.И. Сафронова и др. Заявл. 13.12.2001.
- 11. Пат. РФ № 2328493. Применение усниновой кислоты в качестве синергиста инсектицидов на основе энтомопатогенных микроорганизмов / М.П. Половинка, Н.Ф. Салахутдинов, О.А. Лузина, В.В. Глупов, В.В. Серебряков, И.М. Дубовский, В.В. Мартемьянов, В.Ю. Крюков. Заявл. 09.01.2009.
- 12. Пат. РФ № 2385159. Способ получения препарата ягель-М, обладающего противотуберкулезным действием / Г.В. Филиппова, М.М. Шашурин, Б.М. Кершенгольц, А.Н. Журавская, О.И. Ломовский, Н.Г. Павлов, А.А. Шеин. Заявл. 05.09.2007.

- 13. Пчелкин А.В. Популярная лихенология. М.: МГСЮН, 2006. 40 с.
- 14. Растение-Сфинкс // Наука в Сибири. Еженедельная газета Сиб. отд. РАН. 2006. № 35. С. 7. Режим доступа: http://www.sbras.ru/HBC/hbc.phtml?13+386+1 (дата обращения: 02.02.2012).
- 15. Слонов Л.Х., Слонов Т.Л. Вторичные лишайниковые вещества и их содержание в слоевищах // Фундаментальные и прикладные проблемы ботаники в начале XXI века: материалы XII съезда Русского ботанического общества. Ч. 2. Петрозаводск: Кар НЦ РАН. 2008. С. 238–241
 - 16. Справочник химика. Л.; М.: Химия, 1964. С. 1034–1035.
- 17. *Урбанвичюс Г.П.* Особенности разнообразия лихенофлоры России // Изв. РАН. Серия географическая. 2011. С. 66–78.
- 18. Элементный состав лишайников *P. cetraria* Ach. из различных регионов России / С.Э. Вершинина [и др.] // Химия растительного сырья. 2009. № 1. С. 141–146.
- 19. Antibacterial properties of four pacific Northwest lichens / M. Crockett [et al.] // 2003. URL:http://lichens.science.oregonstate.edu/antibiotics/lichen_antibiotics.htm#results (дата обращения: 02.02.2012)
 - 20. Campbell N.A., Reece J.B., Mitchel L.G. Biology. 2005. 1175 p.
- 21. Cellular mechanisms of the anticancer effects of the lichen compound usnic acid / E. Einarsdóttir [et al.] // Planta Med. 2010. P. 969–974.
- 22. Characterisation of phenols and antioxidant and hypolipidaemic activities of *Lethariella cladonioides* / A.H. Wei [et al.] // J. Sci. Food Agric. 2011.
- 23. Chemical composition, antioxidant, and antimicrobial activites of *Lichen umbilicaria cylindrica* (L.) Delise (*Umbilicariaceae*) / N.T. Manojlovic [et al.] // Evid Based Complement Alternat Med. 2011.
- 24. Does usnic acid affect microtubules in human cancer cells? / M.A. O'Neill [et al.] // Braz. J. Biol. 2011. P. 659–664.
- 25. Effects of usnic acid exposur on human hepatoblastoma HepG2 cells in culture / S.C. Sahu [et al.] // J. Appl. Toxicol. 2011.
- 26. Flückiger F.A. Pharmacographia: a history of the principal drugs of vegetable origin, met with in Great Britan and British India. 1874. 704 p.
- 27. Intraerythrocytic stages of *Plasmodium falciparum biosynhesize* vitamin E / R.A. Sussmamm [et al.] // FEBS Lett. 2011.
- 28. Mechanical effects, antimicrobial afficacy and cytotoxicity of usnic acid as a biofilm prophylaxis in PMMA / S. Kim [et al.] // J. Mater Sci Matter Med. 2011.
- 29. *Pires R.H., Lucarini R., Mendes-Giannini M.J.* Effect of usnic acid on *C. orthopsilosis* and *C. parapsilosis* // Antimicrob Agents Chemother. 2011.
- 30. Ramos D.F., Almeida da Silva P.E. Antimycobacterial activity of usnic acid against resistant and susceptible strains of *Mycobacterium tuberculosis* and *Non-tuberculous mycobacteria* // Pharm. Biol. 2010. C. 260–263.
- 31. Usnic acid: a non-genotoxic compound with anti-cancer properties / M. Mayer [et al.] // Anti-Cancer Drugs. 2005. P. 805–809.
- 32. Veriable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid / M. Backorova [et al.] // Toxicol in vitro. 2011. P. 37–44.

Поступила 09.02.12

A.I. Shcherbakova, A.V. Koptina, A.V. Kanarskiy Volga State University of Technology

Biologically Active Substances of Lichens

The article considers biological features of lichens. Lichens are wide-spread in the nature and are able to grow on a variety of substrates. An analysis of the biological composition of lichens has been carried out. Attention is given to the fact that lichen substances have a wide range of medical properties including antimicrobial, antimycotic, antiviral, anti-inflammatory, analgesic, antipyretic, anti-proliferative and cytotoxic. Of particular interest is usnic acid which in addition has anticancer potency.

Key words: lichen, biodiversity, biologically active substances, biological activity.