

УДК 630*161.4:631.811.1

В.Н. Коновалов¹, Л.В. Зарубина²

¹Северный (Арктический) федеральный университет имени М.В. Ломоносова


²Вологодская государственная молочнохозяйственная академия имени Н.В. Верещагина

Коновалов Валерий Николаевич родился в 1940 г., окончил в 1965 г. Архангельский институт, кандидат биологических наук, доцент кафедры экологии и защиты леса (Арктического) федерального университета. Имеет около 120 печатных работ в области физиологического обоснования эффективности лесоосушения на Севере, подсочки и просмоления древесины, применения минеральных удобрений в лесных экосистемах, изучения природы лесов Крайнего Севера, сезонного роста древесных пород и др. Тел.: 8(8182) 21-61-58

Зарубина Лилия Валерьевна родилась в 1975 г., окончила в 1997 г. Архангельский технический университет, кандидат сельскохозяйственных наук, доцент кафедры Вологодской государственной молочнохозяйственной академии. Имеет 30 печатных работ физиологии осущаемых лесов, биологии рубок, вопросам минерального питания и др. Тел.: 8-921-684-31-56

лесотехнический Северного эколого-прижизненного способов рубок,

ВЛИЯНИЕ ДОЗЫ АЗОТА ПРИ ПОДКОРМКАХ НА ОТТОК ¹⁴С-АССИМИЛЯТОВ У СОСНЫ В СОСНЯКАХ ЛИШАЙНИКОВЫХ

Показано влияние дозы азота при внесении минеральных удобрений на скорость ассимиляции атмосферной CO_2 и отток ¹⁴C-ассимилятов у сосны в сосняках лишайниковых. Выявлено, что повышенная доза азота в первый год у сосны нарушает ассимиляцию CO_2 , отток из хвои, передвижение по дереву углеродных продуктов и в целом ведет к снижению продуктивности деревьев.

Ключевые слова: сосна, сосняки лишайниковые, азот, доза, отток, ¹⁴С-ассимиляты.

Среди физиологических проблем, связанных с продуктивностью растений, центральное место отводится интеграции фотосинтеза и роста, которая на уровне целого реализуется через систему донорно-акцепторных взаимоотношений, опосредованных процессами транспорта ассимилятов [7, 10-12]. Продукты фотосинтеза являются основным источником для синтеза важнейших органических соединений, используемых растением на рост. Поэтому создание благоприятных условий для их биосинтеза и ускоренного выхода из фотосинтезирующей клетки служит одним из главных условий повышения продуктивности растений. Часто вследствие нарушения работы корней ассимиляционный аппарат бывает перегружен крахмалом и другими продуктами ассимиляции, тогда как содержание их в других частях растений бывает пониженным, обеспечивающим нормальную работу. Напротив, ускоренное ИХ ассимиляционного аппарата от продуктов фотосинтеза позволяет значительно повысить работоспособность самого ассимиляционного аппарата [2, 7, 12], способствует усилению роста, поглощению корнями из почвы питательных элементов и воды. Удобрения способны значительно интенсифицировать эти процессы.

Нами в 25-летнем сосняке лишайниковом у сосны, наряду с другими физиологическими процессами, было изучено влияние дозы азотного удобрения (N180, N240, контроль) на скорость оттока, передвижения и распределения изотопа углерода 14 С. Удобрения в виде карбамида были внесены в почву в первой декаде июня. Подкормка трех верхушечных мутовок радиоактивной углекислотой (14 CO $_2$ + CO $_2$ (4 МБк/л)) проведена при ясном безоблачном небе через три недели после внесения удобрений. Можно отметить, что при отсутствии верхнего затеняющего полога и небольших размерах деревьев (1,8...2,0 м) все экземпляры были одинаково хорошо освещены, почва увлажнена.

Перед подкормкой и неделю после нее стояла сухая жаркая погода (дневная температура – 28...32 °C, ночная – 19...23 °C). У сосны шло активное формирование прироста апикальных и латеральных побегов, началось появление и развитие на побегах молодой хвои. В день подкормки

[©] Коновалов В.Н., Зарубина Л.В., 2012

длина молодой хвои составляла 1,0...1,5 см. Образцы хвои, древесины и корней для анализа отбирали через 0.5; 6: 24 и 192 ч. Результаты исследований приведены в таблице.

Из данных таблицы видно, что внесение азота изменило интенсивность ассимиляции CO_2 сосной. Результаты радиометрического анализа показали, что за время экспозиции $(0,5\,$ ч) в атмосфере $^{14}CO_2+CO_2$ у растений на контрольной и опытных (N180, N240) площадках в процессе фотосинтеза (в расчете на $1\,$ г абс. сухой массы) хвоей текущего года было ассимилировано радиоуглерода соответственно $61,4\cdot10^3;~71,3\cdot10^3$ и $56,6\cdot10^3$ имп./мин. За этот же период хвоей второго года вегетации было ассимилировано в 4,8-5,0 раз больше, чем только что вышедшей изпод почечных чешуек. Следует отметить, что в этот период активному поглощению $^{14}CO_2$ сосной способствовала достаточно высокая интенсивность дыхания корней $(1,2...2,1\,$ мг $CO_2/(\Gamma\cdot ч)-$ мелкие, $0,8...1,2\,$ мг $CO_2/(\Gamma\cdot v)-$ ростовые корни).

Влияние дозы азота на скорость оттока и распределения 14 С-ассимилятов ($R\cdot 10^3$, имп./мин на 1 г абс. сухого вещества) у сосны

	Контроль				N180				N240			
Объект	Время наблюдений, ч											
	0,5	6	24	192	0,5	6	24	192	0,5	6	24	192
Хвоя:												
текущего года	61	124	313	289	71	112	341	196	57	99	274	243
второго года	325	235	86	27	364	311	70	27	278	210	65	28
Всего хвои	386	359	399	316	435	423	411	223	335	309	339	271
Корни	0	0	0,3	1,5	0	0	0,6	2,1	0	0	0,3	1,2

Дальнейшие исследования показали, что к моменту подкормки (30 июня) молодая хвоя оставалась еще довольно активным акцептором молодых ассимилятов, за счет которых и шло ее формирование. На это указывает достаточно быстрое повышение радиоактивности ее уже после подкормки. Через 6 ч после экспозиции в токе $^{14}\text{CO}_2 + \text{CO}_2$ радиоактивность молодой хвои в контроле дополнительно к уже имеющейся увеличилась еще на 51 %. Как показали опыты П.И. Юшкова [15], в этот период в молодой хвое происходит интенсивное включение радионуклидов в полимерные соединения и их закрепление в конституционных структурах клеточных стенок. Согласно данным [14], в этот период молодая хвоя сосны является также активным потребителем почвенного азота. В то же время содержание радиоуглерода в прошлогодней хвое после проведенной подкормки начало быстро снижаться в результате его оттока. За 6 ч радиоактивность этой хвои по сравнению с первоначальными показателями уменьшилась на 51 %, а радиоактивность хвои третьего года вегетации за этот же период – на 79 %.

В течение первых суток от начала подкормки радиоактивность молодой хвои в контроле возросла по сравнению с первоначальными показателями на $81\,\%$ и составляла $313,0\cdot10^3$ имп./мин. Только к 8 июля молодая хвоя, достигнув половины (1,6 см – в контроле, 2,4...2,7 см – в опыте) своего максимального размера, перешла на самостоятельное углеродное питание и стала активным донором углеродистых соединений. На это указывает значительное снижение ее радиоактивности, которая в этот период сократилась по сравнению с максимальными значениями на $11...43\,\%$. У двухлетней хвои этот показатель уменьшился в 9,8-13,4 раза и составил в контроле $26,0\cdot10^3$ против $289,0\cdot10^3$ имп./мин, на опытных площадках — соответственно $(27,2...28,3)\cdot10^3$ против $(195,7...234,4)\cdot10^3$ имп./мин. Опыты показали, что развитие молодой хвои и обеспечение ее продуктами текущего фотосинтеза по достижению половины максимального размера происходило преимущественно за счет метаболитов, поступающих из хвои старших возрастов, радиоактивность которой в этот период быстро сокращалась.

Известно, что вырабатываемые в процессе фотосинтеза молодые ассимиляты вследствие их высокой лабильности и возникающих со стороны активных акцепторных центров (молодой хвои, камбия, корней) запросов на них достаточно быстро по системе ближнего и дальнего транспорта экспортируются к зонам активного потребления, где используются для осуществления различных синтезов и процессов жизнедеятельности [7, 5, 10–12].

В ходе экспериментов установлено, что за счет дополнительного поступления ассимилятов доля участия молодой хвои в суммарной радиоактивности существенно возросла и в контроле через сутки составляла 65 % против 8 % сразу после подкормки. Из данных таблицы видно, что через сутки следы радиоуглерода были обнаружены и в корнях, а спустя 8 сут их радиоактивность уже достигла $1,5\cdot10^3$ имп./мин. Однако концентрация радиоуглерода в корнях оставалась в десятки раз ниже, чем в верхушечной мутовке дерева.

В период интенсивного роста побегов в боковых ветвях мутовки, расположенной ниже узла введения, радиоуглерод был обнаружен нами в очень ограниченном количестве. Его содержание в молодой хвое не превышало $4.0\cdot10^3$, а в хвое второго года вегетации $-2.3\cdot10^3$ имп./мин. Однако исследования П.И. Юшкова [15] показали, что радиоактивные продукты фотосинтеза вообще не поступают в мутовки, расположенные ниже подкормленной, и в неподкормленные боковые ветви ниже узла введения. Обнаруженный нами факт появления радиоактивности в молодой хвое, формирующейся ниже узла введения, вероятно, можно отнести на счет возросшей акцепторной активности растущих ветвей этой мутовки и активизации корневой системы в период интенсивного роста хвои и побегов.

Минеральные удобрения являются одним из весьма действенных экзогенных регуляторных факторов, способных существенно изменять донорно-акцепторные взаимоотношения у растений [7]. Результаты наших опытов, проведенных на деревьях, подкормленных разными дозами азота (N180, N240, контроль), показывают, что для сосны содержание азота в почве играет существенную роль в скорости поглощения и передвижения радиоуглеродных соединений. Обе дозы минерального азота через три недели после внесения их в почву существенно изменили скорость ассимиляции $^{14}\mathrm{CO}_2$ сосной и последующее передвижение радиоуглеродных метаболитов, но не изменили общий принцип распределения их между органами дерева.

Сравнивая показатели ассимиляции $^{14}\text{CO}_2$ у контрольных и опытных растений, необходимо отметить, что за период подкормки больше всего радиоугле-рода было ассимилировано удобренными деревьями, особенно, на площадках с дозой азота 180 кг/га (N180). На площадках с дозой N240 1–2-летней хвоей было накоплено радиоактивного углерода на 23 % меньше. Как показывают наши опытные данные [4], эта доза азота у растений нарушила нормальную работу корней и привела к частичной гибели мелких корневых окончаний в верхних слоях почвы. Всего за время подкормки 1–2-летней хвоей у контрольных растений было ассимилировано 397,0· 10^3 , у опытных (N180, N240) — соответственно 434,8· 10^3 и 334,3· 10^3 имп./мин.

Во всех случаях в период активного роста побегов главным акцептором атмосферной ¹⁴CO₂ была хвоя второго года вегетации. Молодым формирующимся ассимиляционным аппаратом в начальный период освобождения его от покровных чешуек было ассимилировано в 5,0–5,5 раза меньше радиоуглерода, чем двухлетней хвоей. В общей суммарной массе поглощенного за время подкормки деревьями радиоуглерода доля молодой хвои в контроле и на опытных площадках (N180, N240) составляла соответственно 8, 16 и 17 %. Из этих данных следует, что в период формирования молодых побегов основную физиологическую нагрузку по ассимиляции атмосферной CO₂ принимает на себя хвоя прошлых лет вегетации. В этот период на ее долю у деревьев на удобренных площадках приходится почти 85 % всего поглощенного углерода. Молодая хвоя в начальный период своего развития (сразу после освобождения от почечных чешуек) даже несмотря на улучшение азотного питания продолжает оставаться активным акцептором молодых ассимилятов. При этом высокие дозы азота в период роста молодых побегов больше задерживают нормальное развитие молодого ассимиляционного аппарата, чем на контроле, снижая его фотосинтетическую активность.

Кроме процессов накопления, при недостатке азотного питания существенные нарушения отмечены нами в динамике содержания и оттока из хвои радиоуглеродных соединений. В течение первых суток наибольшее количество радиоуглеродных соединений поступило в транспортную сеть растений на площадке с N180. Если за первые 6 ч из хвои второго года у контрольных растений оттекло $90.8 \cdot 10^3$, а у опытных (N180 и N 240) $-52.1 \cdot 10^3$ и $68.2 \cdot 10^3$ имп./мин, то течение первых суток от момента подкормки эти показатели заметно изменились и составили соответственно $240,0\cdot10^3$; $293,1\cdot10^3$ и $213,2\cdot10^3$ имп./мин. За этот период практически вся оттекающая из хвои второго года масса ассимилятов поступила в молодую хвою, где использовалась на формирование нового ассимиляционного аппарата. В течение первых суток из суммарного количества транспортируемых в растении ассимилятов в молодую хвою поступило: у контрольных растений $-251,6\cdot10^3$ имп./мин, у опытных растений (N240, N180) $-217,4\cdot10^3$ и $269,9\cdot10^3$ имп./мин. Из этих данных следует, что у сосны в год внесения азот в количестве 180 кг/га значительно ускоряет, а в количестве 240 кг/га задерживает формирование нового ассимиляционного аппарата также, как и его недостаток. Следовательно, доза N180 является оптимальной для сосны в этом возрасте и может быть рекомендована для улучшения условий питания и повышения роста молодых культур сосны в сосняках лишайниковых.

К концу 8 сут радиоактивность молодой хвои на всех участках стала уменьшаться, что свидетельствовало о переходе ее в этот период на самостоятельное углеродное питание, несмотря даже на незавершенность к этому моменту ее видимого роста. За этот период радиоактивность

молодой хвои уменьшилась: в контроле — на 8 %, на опытных площадках (N240, N180) — соответственно на 11 и 43 %. Радиоактивность хвои второго года в течение этого периода также продолжала снижаться. Через 8 сут после подкормки ее радиоактивность от первоначальных максимальных показателей составила: в контроле — 8 %, на опытных площадках (N240 и N180) — соответственно 10 и 8 %. За 8 сут в транспортную сеть больше всего ассимилятов $(336,3\cdot10^3)$ имп./мин) поступило у растений на площадках с дозой N180, а минимальное количество $(249,4\cdot10^3)$ имп./мин) — с дозой N240. В контроле хвоей второго года вегетации в молодую хвою и ствол за этот же период было аттрагировано $299,0\cdot10^3$ имп./мин.

Наблюдаемая у растений на площадках с N180 ускоренная и увеличенная эвакуация меченых ассимилятов из ассимиляционного аппарата дает основание полагать, что она обусловлена повышенными запросами на ассимиляты со стороны активных аттрагирующих центров – потребителей ассимилятов (молодая хвоя, камбий, корни), которые после улучшения корневого питания стали еще более активно их потреблять. На это указывают наши экспериментальные данные более ранних опытов [3].

Известно, что вырабатываемые листом ассимиляты по системе ближнего и дальнего транспорта передвигаются в ствол и дальше в корни, где используются растением при выработке важнейших биологических соединений для формирования нового прироста и поддержания жизнедеятельности. В нашем опыте количество меченых продуктов, поступивших в корни, оказалось зависимым от условий корневого питания. Как показали результаты радиохимического анализа, больше всего ассимилятов в корни $(2,1\cdot10^3)$ имп./мин — в проводящие) поступило у растений на площадках с дозой азота 180 кг. Это на 40 % больше, чем в контроле, и на 52 % больше, чем на площадках с N240. При этом наиболее активно ассимиляты накапливались в мелких корнях. Радиоактивность проводящих корней оказалось на 40 % ниже, чем мелких корневых окончаний.

Как известно, часть ассимилятов, поступивших в корни, после их корневой метаболизации вновь возвращается в надземные органы в виде продуктов корневой деятельности [7, 5]. Поэтому можно полагать, что у растений с дозой N180 в надземную часть возвращается их значительно больше, чем в контроле и на площадке с N240. Эта особенность метаболизма у сосны на площадках с N180 и обеспечила активную работу всех ее органов и более быстрый рост в этих условиях, что в дальнейшем было нами установлено [8].

Таким образом, результаты проведенного нами исследования свидетельствуют о значительном нарушении у сосны в северных сосняках лишайниковых также скорости фотосинтеза и задержки постфотосинтетического оттока из хвои продуктов углеродного метаболизма наряду с другими физиологическими процессами. Установлено, что до середины июля почти все ассимиляты, вырабатываемые хвоей прошлых лет, используются растениями на формирование нового ассимиляционного аппарата и лишь небольшая часть их оттекает в ствол и корни. Азот в благоприятных дозах усиливает ассимиляцию сосной атмосферной СО₂, способствует накоплению и активному перемещению к активным зонам меченых ассимилятов. Повышенные дозы элемента нарушают эти процессы. В литературе имеются указания [9] на то, что азот стимулирует в корнях и листьях растений синтез эндогенных фитогормонов. Последние выступают в качестве важного регуляторного механизма транспорта ассимилятов, ускоряющего перемещение их к потребляющим зонам и органам [1, 6, 12, 13], что и отмечено в наших опытах.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Борзенкова Р.А., Мокроносов А.Т.* Роль фитогормонов в биосинтезе хлоропластов // Физиология растений. 1976. Т. 23, Вып. 3. С. 490–498.
- 2. *Климович С.В., Трунова Т.И., Мокроносов А.Т.* Механизм адаптации растений к неблагоприятным условиям окружающей среды через изменение донорно-акцепторных отношений // Физиология растений. 1990. Т. 37, Вып. 5. С. 1024-1035.
- 3. Коновалов В.Н., Вялых Н.И., Коновалова Л.В. Эколого-физиологическое обоснование рубок главного пользования в лесах Европейского Севера // Антропогенное влияние на европейские таежные леса России. Архангельск: АИЛиЛХ, 1994. С. 38–52.
- 4. *Коновалов В.Н., Листов А.А.* Влияние условий минерального питания на дыхание корней сосны обыкновенной // Лесн. журн. 1989. № 4. С. 15–19. (Изв. высш. учеб. заведений).
 - 5. Крамер П.Д., Козловский Т. Физиология древесных растений. М.: Лесн. пром-ть, 1983. 484 с.
 - 6. Кулаева О.Н. Цитокинины. Их структура и функции. М.: Наука, 1973. 263 с.
 - 7. Курсанов А.Л. Транспорт ассимилятов в растении. М.: Наука. 647 с.

- 8. *Листов А.А.*, *Коновалов В.Н*. Влияние минеральных удобрений на сезонный рост сосны в высоту // Лесоведение. 1988. № 1. С. 33–42.
 - 9. Меняйло Л.Н. Гормональная регуляция ксилогенеза хвойных. Новосибирск: Наука, 1987. 185 с.
- 10. Мокроносов А.Т. Донорно-акцепторные отношения в онтогенезе растений // Физиология фотосинтеза. М.: Наука, 1982. С. 235–250.
 - 11. Мокроносов А.Т. Онтогенетический аспект фотосинтеза. М.: Наука, 1981. 196 с.
- 12. *Ронжина Е.С., Мокроносов А.Т.* Донорно-акцепторные отношения и участие цитокининов в регуляции транспорта и распределения органических веществ в растениях // Физиология растений. 1994. Т. 41, Вып. 3. С. 448–459.
- 13. *Соколова С.В.*, *Балакшина П.О.* Влияние фитогормонов на транспорт и распределение ¹⁴С-сахарозы в срезанных листьях сахарной свеклы // Физиология растений. 1992. Т. 39, Вып. 6. С. 1088–1097.
- 14. *Чернобровкина Н.П.* Усвоение и распределение азота по органам у 15-летней сосны обыкновенной // Физиология растений. 1994. Т. 41, Вып. 1. С. 338–343.
- 15. *Юшков П.И*. Распределение продуктов фотосинтеза в сосне // Физиология и экология древесных растений: тр. Ин-та экологии. Вып. 43. Свердловск: Наука. Сиб. отд-ние, 1965. С. 17–23.

Поступила 16.12.10

V.N. Konovalov¹, L.V. Zarubina²

¹Northern (Arctic) Federal University named after M.V. Lomonosov

Impact of Nitrogen Dose on the 14C-Assimilates Outflow in Pine Trees at the Lichen Pine Forests

The nitrogen dose impact on the assimilation rate of the atmospferic CO_2 and on the outflow of ^{14}C - assimilates in pine trees at the lichen pine stands is shown. It has been revealed that the nitrogen redundant dose in the first year of a pine tree disrupts the CO_2 assimilation, outflow from the needles, locomotion of the carbonic products in a tree, and decreases productivity of a stand. in a whole.

Keywords: pine, lichen pine stands, nitrogen, dose, outflow, ¹⁴C-assimilates.

²Vologda State Diary Academy named after N.V. Vereschagin