ние расхода карбамидных связующих в производстве древесностружечных плит // Деревообраб, пром-сть.—1983.— № 3.— С. 11—13. [3]. Но нхибел Д., Теддер Д., Уолтон Д. Радикалы.— М.: Мир, 1979.— 344 с. [4]. Рошмаков Б. В., Эльберт А. А. Кинетика и механизм отверждения карбамидных смол в присутствии инициаторов свободнорадикального типа // Лесн. журн.—1982.— № 1.— С. 97—103. (Изв. высш. учеб. заведений). [5]. Сарканен К. В., Людвиг К. Х. Лигнины.— М.: Лесн. пром-сть, 1975.—632 с. [6]. Сергеева В. Н. Возможности использования отходов химической переработки древесины — лигносульфонатов и гидролизного лигнина // Перспективы использования древесины в качестве органического сырья.— Рига, 1982.— С. 105—125. [7]. Уэндландт У. Термические методы анализа.— М.: Мир, 1978.—526 с. [8]. Эльберт А. А. Химическая технология древесностружечных плит.— М.: Лесн. пром-сть. 1984.—224 с. жечных плит. — М.: Лесн. пром-сть, 1984. — 224 с.

Поступила 21 мая 1987 г.

УДК 630*824.81/82:674.815-41

ВЛИЯНИЕ МЕХАНИЧЕСКОЙ АКТИВАЦИИ на некоторые свойства карбамидных олигомеров

В. В. ТЕЛЕЖКИН, Е. И. КАРАСЕВ, В. Е. ЦВЕТКОВ

Московский лесотехнический институт

Долговечность клеевых соединений древесины зависит от внутренних напряжений в клеевом шве. Значительные внутренние напряжения приводят к ускоренному старению и преждевременному разрушению клеевых конструкций и древесных композиционных материалов [10]. Существующие традиционные методы снижения внутренних напряжений с помощью пластифицирующих добавок приводят к снижению когезионной прочности клея, что крайне нежелательно.

В данной статье рассмотрен метод физической модификации карбамидного олигомера, приводящий к снижению внутренних напряже-

ний с одновременным приростом прочности.

Методика проведения экспериментов

Метод физической модификации карбамидных олигомеров заключается в механической активации раствора олигомера на специальной дезинтеграторной установке [5—7]. В процессе дезинтеграторной обработки раствор олигомера подвергают много-кратному воздействию мощных механических импульсов. Линейная скорость соударения капель раствора олигомера с рабочими органами установки достигает 150 м/с.

Объект изучения в данной работе— карбамидный олигомер марки КФ-МТ, мольное отношение карбамида к формальдегиду 1:1,3. Олигомер швроко применяют в производстве древесностружечных плит. Раствор олигомера обладает следующими физико-химическими свойствами; концентрация—66 %; вязкость по вискозиметру ВЗ-4—35 с; водородный показатель рН—7,1; время гелеобразования при 100 °С—65 с; со-

держание свободного формальдегида — 0,25 %.

Процесс гелеобразования изучали с помощью ротационного вискозиметра REOTEST. В раствор олигомера вводили отвердитель (щавелевую кислоту). (Здесь и во всей работе применяли 10 %-ный ее раствор). Приготовленную клеевую массу загружали в термостатируемый стакан вискозиметра и затем подключали стакан к коакснальному ротору. Температуру клеевой смеси поддерживали постоянной в течение всего опыта (25 °C).

Величину внутренних напряжений определяли консольным методом. Для этого из березового шпона толщиной 1,2 мм вырезали полоски шириной 8 мм и определяли их модуль упругости. Затем на полоски шпона наносили раствор олигомера с отвердителем. Первое измерение стрелы прогиба консольно-закрепленной пластины производили

через 5 ч, далее ежесуточно - на протяжении двух недель.

Клеяцую способность определяли на березовых образцах, вырезанных из массивной древесины и представляющих собой пластины, склеенные внахлестку. Длина нахлестки составляла 15 мм, ширина склеенных пластин — 20 мм. На концы образцов приклеивали накладки толщиной, равной толщине склеенных пластин, что предотвращало возникновение значительных изгибающих моментов при испытании. Склеивание производили при температуре 25 °C, образцы выдерживали под давлением в течение 5 ч, давление составляло 0,4 МПа. Испытание производили через 7 сут после склеивания.

Теплоту отверждения карбамидного олигомера определяли на термосном калориметре, оснащенном батареей термопар, усилителем сигнала, регистрирующим милливольтметром.

Результаты измерений

Нами изучено влияние механической активации на процесс гелеобразования карбамидного олигомера. На рис. 1 представлены зависимости, характеризующие изменение вязкости в ходе отверждения.

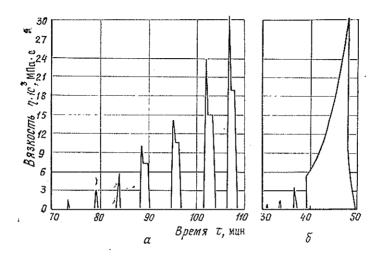


Рис. 1. Нарастание вязкости карбамидного олигомера в процессе отверждения: a — контрольный олигомер; δ — механомодифицированный. Скорость ротации 5 об/мин

С целью выявления тиксотропных свойств отверждающегося олигомера определена вязкость олигомера как контрольного, так и механоактивированного в зависимости от величины напряжения сдвига на

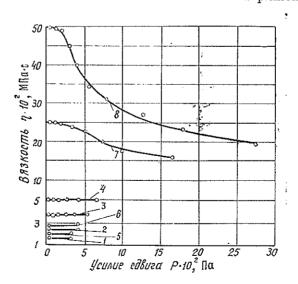


Рис. 2. Проявление карбамидным олигомером тиксотропных свойств на различных стадиях отверждения: 1, 2, 3, 4— контрольный олигомер; 5, 6, 7, 8— механомодифицированный

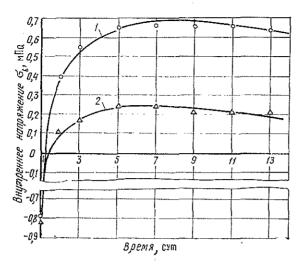
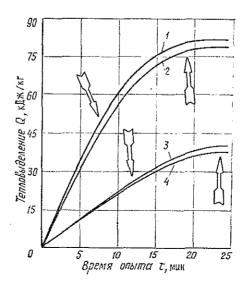


Рис. 3. Динамика изменения внутренних напряжений в клеевой паре шпон — олигомер: 1 — контрольный; 2 — механомодифицированный

различных этапах отверждения (рис. 2). Результаты измерения внутренних напряжений представлены на рис. 3.


Олигомер	Прочность клеевого соединения	
	Средняя арифмети- ческая величина, МПа	Показатель точности среднего значения
Контрольный Механомо.	1,35	3,25
дифици- рованный	2,00	2,98

Примечание. В обонх случаях число опытных образцов 20.

Экспериментальные данные по определению прочности клеевых соединений представлены в таблице. Точность опытов характеризуется показателем точности среднего значения.

Кинетика химического взаимодействия функциональных групп в карбамидном олигомере при отверждении совместно с определением момента гелеобразования на кривой тепловыделения представлена на рис. 4.

Рис. 4. Экзотерма отверждения карбамидного олигомера: 2, 4 — контрольного с количеством отвердителя соответственно 2 и 1,4 %; 1, 3 — механомодифицированного с количеством отвердителя соответственно 2 и 1,4 %; стрелками обозначен момент гелеобразования

Анализ результатов

Как видно из рис. 1, механомодификация карбамидного олигомера приводит к сокращению времени отверждения. Из литературных источников [1, 3, 7] можно предположить, что причиной сокращения времени гелеобразования служит образование новых активных функциональных групп или увеличение полярности имеющихся. Однако это справедливо лишь в том случае, если надмолекулярная организация контрольного и механомодифицированного олигомеров тождественна. Убедиться, что сокращение времени отверждения обусловлено химической структурой олигомера, не представляет труда.

Нами проведены калориметрические опыты, где экзотерму отверждения карбамидного олигомера рассматривали как кинетическую зависимость. В соответствии с результатами опыта (рис. 1) следовало ожилать существенной разницы как в скорости тепловыделения, так и в суммарном тепловом эффекте. (Это имеет место, если олигомер отверждается при различной концентрации отвердителя). Однако проведенный эксперимент показал (рис. 4), что ни в скорости, ни тем более в энтальпии отверждения нет заметных различий между контрольным и механоактивированным олигомерами.

Полученный результат приводит к выводу, что скорейшее нарастание вязкости в механомодифицированном олигомере вызывают не химические реакции, а процессы взаимодействия надмолекулярных образований, которые и образуют пространственную трехмерную

структуру.

Помимо регистрации тепловыделения в процессе отверждения фиксировали момент гелеобразования и устанавливали связь между моментом гелеобразования и степенью превращения функциональных групп. Как видно из рис. 4, контрольный олигомер переходит в отвержденное состояние при степени превращения 90... 98 %, а механомодифицированный — при 60 ... 70 %.

Из этого следует, что в механомодифицированном олигомере процесс отверждения ускоряется за счет скорейшего взаимодействия надмолекулярных агрегатов (глобул), размеры которых в активированном олигомере в 2...3 раза меньше, чем в контрольном [9]. Справедливость высказанных положений подтверждается еще и тем, что инфракрасные спектры контрольного и механомодифицированного олигомеров как в жидком, так и в отвержденном состоянии полностью совпадают.

Следовательно, обретаемые в результате активации свойства определяются именно надмолекулярной структурой олигомера. Из рис. 4 следует также и то, что в механомодифицированном олигомере возникают взаимопроникающие сетки, поскольку химические реакции, а следовательно, и надмолекулярная структура продолжает формироваться

еще долго после момента гелеобразования.

Это означает, что надмолекулярные образования в механомодифицированном олигомере встраиваются в трехмерную сетку в весьма широком интервале времени, что способствует сокращению малых периодов релаксации внутренних напряжений [4, 8]. На макроуровне этот процесс должен проявиться в развитии тиксотропных свойств в ходе

отверждения механомодифицированного олигомера.

На рис. 2 показана зависимость вязкости от напряжения сдвига для контрольного и механомодифицированного олигомеров в процессе их отверждения. В исследованном интервале времени отверждения и напряжений сдвига в контрольном олигомере не обнаружено тиксотропных свойств, в то время как в механомодифицированном они ярко выражены [2, 8]. Следовательно, возникновение взаимопроникающих структур в отверждающемся олигомере (рис. 4) и наличие тиксотропных

свойств (рис. 2) в конечном итоге обусловливают снижение внутренних напряжений в отвержденном механомодифицированном олигомере по

сравнению с контрольным (что видно из рис. 3).

Обратим внимание на рис. 1, а именно на характер временных зависимостей в процессе ротации. Так, в отверждающемся контрольном олигомере под действием вращающегося ротора происходит разрушение трехмерной сетки из макроагрегатов, что указывает на низкую энергию связи глобул между собой. В механомодифицированном олигомере, несмотря на непрерывную ротацию, наблюдается стремительный рост вязкости. Это говорит о том, что энергия взаимодействия глобулярных агрегатов в механомодифицированном олигомере настолько велика, что внешние механические воздействия не в состоянии нарушить образующейся трехмерной сетки.

Из сказанного следует, что можно ожидать большую прочность склеивания там, где энергия межагрегатных связей выше еще на стадии отверждения. Данное положение подтверждается эксперименталь-

ными результатами, приведенными в таблице.

Таким образом, в результате механомодификации карбамидных олигомеров сокращается время гелеобразования. Механомодификация приводит к изменению механизма отверждения олигомера и образования пространственной структуры, но не оказывает влияния на химическое строение олигомера, а все изменения происходят на надмолекулярном уровне. Внутренние напряжения в отвержденном механомодифицированном олигомере меньше, а прочность склеивания выше, чем в контрольном.

Все это позволяет считать метод механомодификации карбамидных олигомеров перспективным для повышения физико-механических характеристик клеевых соединений древесины и древесных композиционных

материалов на их основе.

ЛИТЕРАТУРА

[1]. Барамбойми Н. К. Механохимия высокомолекулярных соединений.— М.: Химия, 1971.— 364 с. [2]. Зубов П. И., Сухарева Л. А. Структура и свойства полимерных покрытий.— М.: Химия, 1982.— 256 с. [3]. Казале А., Портер Р. Реакции полимеров под действием напряжений.— Л.: Химия, 1983.— 440 с. [4]. Липатов Ю. С. Будущее полимерных композиций.— Киев: Наукова думка, 1984.— 134 с. [5]. СКТБ «Дезинтегратор» УДА-технология: Тез. докл. семинара.— Таллин, 8—10 сент. 1982 г.— 48 с. [6]. СКТБ «Дезинтегратор» УДА-технология: Тез. докл. 2-го семинара.— Таллин, 6—8 сент. 1983 г.— 116 с. [7]. СКТБ «Дезинтегратор» ТПО «Пигмент» УДА-технология: Тез. докл. 3-го семинара 4—6 сент. 1984 г.— 124 с. [8]. Сухарева Л. А. Долговечность полимерных покрытий.— М.: Химия, 1984.— 240 с. [9]. Гележки в. В. В., Карасев Е. И., Цветков В. Е. Влияние механомодификации на оптические свойства карбамидных олигомеров // Технология древесных плит и пластиков: Науч. тр. МЛТИ, 1986.— Вып. 179. [10]. Фрейди н. А. С., Вуба К. Т. Прогнозирование свойств клеевых соединений древесины.— М.: Леси. пром-сть, 1980.— 224 с.

Поступила 23 марта 1987 г.

УДК 630*813:0.867

ТЕПЛОВОЙ РАСЧЕТ ПИРОЛИЗА ДРЕВЕСИНЫ

Н. И. БОГДАНОВИЧ

Архангельский лесотехнический институт

Тепловые расчеты процессов пиролиза древесины выполняют при определении теплового эффекта реакций термического разложения и связанных с ним затрат теплоносителя. Исходные данные для расчета: высшая теплота сгорания, элементный состав, влажность и зольность