

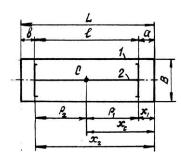
УДК 629.114:656.08

С.И. Морозов, С.Л. Смирнов

Морозов Станислав Иванович родился в 1929 г., окончил в 1952 г. Ленинградскую лесотехническую академию, доктор технических наук, профессор, заведующий кафедрой теоретической механики Архангельского государственного технического университета, член-корреспондент РИА, заслуженный деятель науки и техники РФ. Имеет более 160 печатных работ в области изучения устойчивости температурно-напряженного рельсового пути, закрепления его от угона рельсов, удара тел, применения ЭВМ при решении задач механики.

Смирнов Сергей Леонидович родился в 1976 г., окончил в 1998 г. Архангельский государственный технический университет, аспирант кафедры теоретической механики АГТУ. Имеет 2 печатные работы в области теории удара.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТОДИКИ РАССЛЕДОВАНИЯ ДОРОЖНО-ТРАНСПОРТНЫХ ПРОИСШЕСТВИЙ


Предложена методика расследования ДТП. Приведены математические обоснования методики и решение практической задачи.

механика, удар, автомобиль, дорожно-транспортные происшествия, скорости, методика расчета.

Дорожно-транспортные происшествия (ДТП) весьма многообразны и происходят по различным организационно-техническим причинам. Во многих случаях они являются следствием соударения автомобилей или удара автомобиля о неподвижное препятствие.

Предполагаем, что взаимодействие автомобилей в момент удара и их последующие перемещения происходят в плоскости дороги. Рассмотрим методику расследования ДТП на базе теории соударения двух плоских свободных тел, основы которой изложены в работах [1–3].

На рис. 1 в упрощенном виде изображены: l – автомобиль; 2 – ходовая часть; принятые обозначения: L, B – габаритная длина и ширина; l – база; a, b – передний и задний свес; x_1 , x_2 – расстояния от переднего бампера до передней и задней осей (мостов) автомобилей, $x_1 = a$; $x_2 = a + l$; x_c – расстояние от центра масс (точки C) до переднего бампера; ρ_1 , ρ_2 – расстояния от центра масс до передней и задней осей (мостов), $\rho_1 = x_c - a$; $\rho_2 = l - \rho_1$.

По этим размерам и массам отдельных частей можно найти положение центра масс

$$x_c = \frac{m'x_1 + m''x_2}{m_1 + m_2} \tag{1}$$

и момент инерции автомобиля относительно вертикальной оси, проходящей через точку C:

$$I_c = m'\rho_1^2 + m''\rho_2^2, (2)$$

где m', m'' – массы автомобилей, приходящиеся соответственно на передний и задний мосты.

Примерная схема соударения автомобилей (боковой удар) изображена на рис. 2. Здесь показаны: I — ударяющий и 2 — ударяемый автомоби-

ли; E — точка соударения, которая отстоит от переднего бампера автомобиля 2 на расстояние Δ ; C_1 , C_2 — центры масс; τ_1 , n_1 — оси координат для тела 1; τ_2 , n_2 — то же для тела 2; h_1 , p_1 — координаты точки C_1 ; h_2 , p_2 — точки C_2 ; r_1 , r_2 — радиусы-векторы точки E, проведенные из точек C_1 и C_2 ; β — угол наклона автомобиля I к автомобилю I; I0 скорости движения автомобилей I1 и I2 до удара.

Оси n_1 и n_2 всегда направлены внутрь соударяющихся тел, оси τ_1 и τ_2 образуют с ними

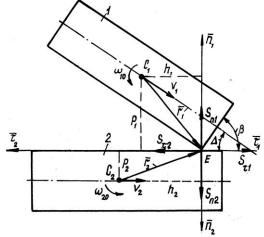


Рис. 2

правосторонние системы координат (для каждого автомобиля в отдельности). Буквами S_n и S_τ обозначены импульсы ударных сил; ω_{10} , ω_{20} — угловые скорости вращения автомобилей до удара.

Координаты точек C_1 , C_2 определяют по уравнениям

$$h_{1} = -x_{c_{1}} \sin \beta + \frac{B_{1}}{2} \cos \beta; \quad h_{2} = x_{c_{2}} - \Delta;$$

$$p_{1} = -x_{c_{1}} \cos \beta + \frac{B_{1}}{2} \sin \beta; \quad p_{2} = \frac{B_{2}}{2},$$
(3)

где x_{c_1}, x_{c_2} – расстояния от точек C_1 , C_2 до передних бамперов;

 B_1 , B_2 — ширина первого и второго автомобиля. Импульсы ударных сил определяют по формулам: удар с проскальзыванием:

$$S_{\tau} = S_n f_{\ddot{a}}; \quad S_n = -\frac{(1+\varepsilon)A_1}{G + Hf_{\ddot{a}}}; \tag{4}$$

удар без проскальзывания:

$$S_{\tau} = \frac{(1+\varepsilon)HA_1 - GA_2}{B}; \quad S_n = -\frac{HA_2(1+\varepsilon)G_1A_1}{B},$$
 (5)

где

 $f_{\rm д}$ – динамический коэффициент трения;

 ε – коэффициент восстановления, ε < 1;

 G, G_1, H, B – инерциальные коэффициенты,

$$G = \frac{1}{m_1} + \frac{1}{m_2} + \frac{h_1^2}{I_1} + \frac{h_2^2}{I_2};$$

$$G_1 = \frac{1}{m_1} + \frac{1}{m_2} + \frac{p_1^2}{I_1} + \frac{p_2^2}{I_2};$$

$$H = \frac{p_1 h_1}{I_1} + \frac{p_2 h_2}{I_2};$$

$$B = GG_1 - H^2;$$
(6)

 A_1, A_2 – скоростные коэффициенты,

$$A_{1} = \overline{\mathbf{v}}_{1}\overline{n}_{1} + \overline{\mathbf{v}}_{2}\overline{n}_{2} + \overline{h}_{1}\overline{\omega}_{10} + \overline{h}_{2}\overline{\omega}_{20};$$

$$A_{2} = \overline{\mathbf{v}}_{1}\overline{\mathbf{\tau}}_{1} + \overline{\mathbf{v}}_{2}\overline{\mathbf{\tau}}_{2} + \overline{p}_{1}\overline{\omega}_{10} + \overline{p}_{2}\overline{\omega}_{20}.$$

$$(7)$$

В системе формул (7) выражение vn, τn следует рассматривать как проекции скоростей центров масс до удара на оси n и τ . Скорости центров масс после удара u_1 и u_2 вычисляют через их проекции на оси n и τ по формулам

$$\frac{1}{u_{1}} \frac{1}{\tau_{1}} = \frac{1}{v_{1}} \frac{1}{\tau_{1}} + \frac{S_{\tau}}{m_{1}};$$

$$\frac{1}{u_{1}} \frac{1}{n_{1}} = \frac{1}{v_{1}} \frac{1}{n_{1}} + \frac{S_{n}}{m_{1}};$$

$$\frac{1}{u_{2}} \frac{1}{\tau_{2}} \frac{1}{\tau_{2}} = \frac{1}{v_{1}} \frac{1}{\tau_{1}} + \frac{S_{\tau}}{m_{2}};$$

$$\frac{1}{u_{2}} \frac{1}{n_{2}} \frac{1}{n_{2}} = \frac{1}{v_{2}} \frac{1}{n_{2}} + \frac{S_{n}}{m_{2}}.$$
(8)

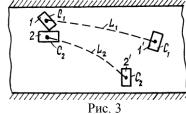
Угловые скорости вращения автомобилей после удара (ω_1 , ω_2) выражают через угловые скорости до удара (ω_{10} , ω_{20}) и моменты импульсов ударных сил S_{τ} и S_n относительно центров масс C_1 и C_2 :

$$\omega_{1} = \omega_{10} + \frac{S_{\tau} p_{1} + S_{n} h_{1}}{I_{1}};$$

$$\omega_{2} = \omega_{20} + \frac{S_{\tau} p_{2} + S_{n} h_{2}}{I_{2}}.$$
(9)

Знаки произведений Sp и Sn находят по обычным правилам механики.

Для вычисления импульсов ударных сил, по которым определяют линейные и угловые скорости после удара, выше приведены две группы формул (4) и (5). Сначала надо вычислить значения S_{τ} и S_n по формулам группы (5), затем коэффициент трения скольжения f_{π} :

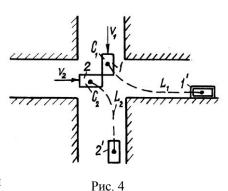

$$f_{\ddot{a}} = \frac{S_{\tau}}{S_{n}}.\tag{10}$$

Обозначим предельное значение коэффициента трения скольжения f_{Π} . Если $f_{\Pi} < f_{\Pi}$, то удар происходит без проскальзывания, если $f_{\Pi} = f_{\Pi} - c$ проскальзыванием. В последнем случае значения S_{τ} и S_n определяют по формулам группы (4).

Таким образом, используя расчетные зависимости (1)–(10), можно решить задачу плоского удара двух тел, в том числе и автомобилей. Эту же задачу можно решить с помощью компьютерной модели [4].

После соударения автомобили еще некоторое время движутся по поверхности дороги (рис. 3). Здесь I и 2 — положения автомобилей в момент удара, $I^{'}$ и $2^{'}$ — после прекращения движения и остановки, 3 — участок дороги.

Центры масс автомобилей, перемещаясь по произвольным траекториям (условно на рис. 3 они показаны пунктиром), пройдут до остановки расстояние L_1 и L_2 . Таким образом, задача расследования ДТП


состоит из двух частей. В первой рассматривают процесс удара, во второй – движение автомобилей после удара до остановки.

В зависимости от исходных данных такую задачу можно подразделить на прямую и обратную. В первой (прямой) задаче известны скорости движения автомобилей до удара, их линейные размеры и распределение масс. Требуется найти положение автомобилей на дороге в конце их движения после удара до остановки. Во второй (обратной) известны, помимо геометрических и физических параметров автомобилей, значения L_1 и L_2 . Требуется восстановить условия соударения тел (т. е. найти скорости автомобилей до удара).

Первую часть прямой и обратной задачи можно решить с помощью формул (1)—(10). Вторую часть предпочтительно решать с помощью дифференциальных уравнений плоскопараллельного движения или теоремы об изменении кинетической энергии.

Рассмотрим пример на соударение двух автомобилей, которые до удара двигались взаимно перпендикулярно и столкнулись на перекрестке двух улиц (рис. 4).

Автомобиль № 1 марки AUDI-80 (ударяющий) двигался по дороге в районе перекрестка со скоростью v_1 . Автомобиль № 2 марки УАЗ-31512 (ударяемый) перемещался по перпендикулярной дороге. В момент столкновения шофер второго автомобиля остановил

свою машину, т. е. $v_2 = 0$. После удара автомобили заняли положения I и 2, переместившись от точки удара на расстояние: $L_1 = 27,7$ м, $L_2 = 14,5$ м.

Зная перемещение после удара, найдем скорость движения первого автомобиля до удара. Таким образом, здесь имеем обратную задачу. Исходные данные приведены в табл. 1.

Таблица 1

№ авто-	Масса, кг			Размеры, м					Расчетные величины	
мобиля	m	m'	M''	L	В	l	а	В	x _c , M	$I_{\rm c}$, кг·м
1	1230	673	557	4,482	1,695	2,612	0,496	0,984	2,1288	2079,27
2	1590	870	720	4,025	1,785	2,380	0,680	0,965	1,7577	2133,50

С помощью этих данных по формулам (1) и (2) находим значения x_c и I_c , которые приведены в таблице.

Затем последовательно вычисляем:

а) координаты точек C_1 и C_2 по формулам (3) при $\beta = 90^\circ$:

$$\begin{split} h_1 &= \frac{B_1}{2} = \frac{1,695}{2} = 0,8475 \ \ \grave{\imath} \ \ ; \quad p_1 = x_{c_1} = 2,1288 \ \grave{\imath} \ \ ; \\ h_2 &= x_{c_2} - \Delta = 1,7577 - 0,25 = 1,5077 \ \ \grave{\imath} \ \ ; \quad p_2 = \frac{B_2}{2} = \frac{1,785}{2} = 0,8525 \ \grave{\imath} \ \ ; \end{split}$$

б) инерциальные и скоростные коэффициенты по формулам (6) и (7):

$$G = 0,002853 \text{ kg}^{-1};$$

$$G_1 = 0,003995 \text{ kg}^{-1};$$

$$H = -0,001492 \text{ kg}^{-1};$$

$$B = 9,152 \cdot 10^{-6} \text{ kg}^{-1};$$

$$A_1 = \overline{\mathbf{v}}_1 \overline{n}_1 + \overline{\mathbf{v}}_2 \overline{n}_2 + \overline{h}_1 \overline{\mathbf{\omega}}_{10} + \overline{h}_2 \overline{\mathbf{\omega}}_{20} = \overline{\mathbf{v}}_1 \overline{n}_1 = \mathbf{v}_1;$$

$$A_2 = \overline{\mathbf{\tau}}_1 \overline{n}_1 + \overline{\mathbf{\tau}}_2 \overline{n}_2 + \overline{p}_1 \overline{\mathbf{\omega}}_{10} + \overline{p}_2 \overline{\mathbf{\omega}}_{20} = 0;$$

в) импульсы ударных сил по формулам (5) (удар без проскальзывания):

$$S_{\tau} = 196,4553v_1;$$

 $S_n = 523,7978v_1;$

г) скорости после удара по формулам (8) и (9):

$$\begin{split} \overline{u_1} \overline{v_1} &= \overline{v_1} \overline{v_1} + \frac{S_{\tau}}{m_1} = 0 + \frac{196,4553 \, v_1}{1230} = 0,1597 \, v_1 \, \text{i/ñ} \, ; \\ \overline{u_1} \overline{n_1} &= \overline{v_1} \overline{n_1} + \frac{S_n}{m_1} = -v_1 + \frac{523,7978 \, v_1}{1230} = -0,5742 \, v_1 \, \text{i/ñ} \, ; \\ \overline{u_2} \overline{v_2} &= \overline{v_1} \overline{v_1} + \frac{S_{\tau}}{m_2} = 0 + \frac{196,4553 \, v_1}{1590} = 0,136 \, v_1 \, \text{i/ñ} \, ; \\ \overline{u_2} \overline{n_2} &= \overline{v_2} \overline{n_2} + \frac{S_n}{m_2} = 0 + \frac{523,7978 \, v_1}{1590} = 0,3294 \, v_1 \, \text{i/ñ} \, ; \\ \overline{u_1} &= \overline{u_1} + \frac{S_{\tau} p_1 + S_n h_1}{I_1} = 0 + \frac{196,4553 \, v_1 \cdot 2,1288 - 523,7978 \, v_1 \cdot 0,8475}{2079,27} = -0,01236 \, v_1 \, c^{-1}; \\ \overline{u_2} &= \overline{u_2} + \frac{S_{\tau} p_2 + S_n h_2}{I_2} = 0 + \frac{196,4553 \, v_1 \cdot 0,8925 - 523,7978 \, v_1 \cdot 1,5077}{2133,5} = -0,2880 \, v_1 \, c^{-1}. \end{split}$$

$$w_2 - w_{20} + \frac{1}{I_2} = 0 + \frac{1}{I_2}$$
 2133,5 2133,5

Так как $\omega_1 \le 0$ и $\omega_2 \le 0$, то оба автомобиля после удара получат вращение по часовой стрелке.

Для первого тела проекция скорости точки C_1 на ось n_1 будет направлена в сторону, обратную оси n_1 , для тела 2 проекция скорости точки C_2 на ось n_2 – в сторону n_2 .

Вначале было принято $\epsilon = 0,3$. После решения величина ϵ была уточнена по формуле

$$\overline{u}_1\overline{n}_1 + \overline{u}_2\overline{n}_2 = -\varepsilon(\overline{v}_1\overline{n}_1 + \overline{v}_2\overline{n}_2),$$

отсюда

$$\varepsilon = -\frac{u_1 n_1 + u_2 n_2}{v_1 n_1}.$$

После подстановки получим

$$\varepsilon = -\frac{-0.5742 \,\mathrm{v}_1 + 0.3294 \,\mathrm{v}_1}{-\,\mathrm{v}_1} = 0.2448,$$

что достаточно близко к принятому ранее значению $\varepsilon = 0,3$.

Коэффициент трения скольжения f_{π} при ударе находим по формуле

$$f_{\ddot{a}} = \frac{S_{\tau}}{S_n} = \frac{196,4553 \,\mathrm{v}_1}{523,7978 \,\mathrm{v}_1} = 0,375.$$

Так как $f_{\rm d} < f_{\rm n}$, то удар произошел без проскальзывания. Значения є и $f_{\rm n}$ в данном случае не зависят от скорости движения автомобилей до удара.

Решаем теперь вторую часть задачи при помощи теоремы об изменении кинетической энергии

$$T-T_0=\Sigma A_i$$
,

где T = 0 (в конце движения автомобили остановились);

 T_0 – кинетическая энергия после удара;

 ΣA_i – сумма работ сил трения.

Для первого автомобиля

$$T_0 = \frac{m_1}{2} (\bar{u}_1 \bar{\tau}_1^2 + \bar{u}_2 \bar{\tau}_2^2) - \frac{1}{2} I_1 \omega_1^2 = 203,2924 v_1^2, \ddot{A}æ;$$
$$\Sigma A_i = -m_1 g f L_1 = -100270,95 \ddot{A}æ.$$

Здесь f — коэффициент трения колес автомобилей о поверхность дороги.

Приравниваем эти выражения:

$$203,2924 \text{ v}_{1}^{2} = 100270,95,$$

отсюда $v_1 = 22,21 \text{ м/c} = 79,96 \text{ км/ч}.$

Аналогично находим для второго автомобиля

$$T_0 = 186,8752 \text{ v}_1^2 \text{ Ä}\text{æ}; \Sigma A_i = 67850,865 \text{ Ä}\text{æ}; \text{v}_1 = 19,05 \text{i}/\text{ñ} = 68,58 \text{ ê}\text{i}/\div$$

Используя найденное значение v_1 , определим все расчетные величины, характеризующие процесс удара (табл. 2).

Таблица 2

№ авто-	v,	Импульс, Н⋅с		Ско	рость ли	нейная,	Скорость угловая, с-1		
мобиля	м/с	$S_{ au}$	S_n	$\bar{u}_1\bar{\tau}_1$	$\bar{u}_1\bar{n}_1$	$\bar{u}_2\bar{\tau}_2$	$\bar{u}_2\bar{n}_2$	ω_1	ω_2
1	22,21	4363,3	11633,5	3,55	-12,75	3,02	7,32	-0,273	-6,396
2	19,05	3742,5	9978,3	3,04	-10,94	2,59	6,28	-0,235	-5,486

В принципе значения начальной скорости центра масс для первого и второго автомобилей должны совпадать. В данном случае различия составляют 14 %. Это, по всей видимости, объясняется условиями движения второго автомобиля. На пути его движения встречались препятствия в виде канав и кустов, что привело к увеличению коэффициента трения скольжения до 0,349.

Таким образом, рассмотренная методика расследования ДТП дает вполне приемлемые результаты и может быть рекомендована для применения на практике.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Морозов С.И*. Удар двух тел: Методич. указания по решению задач. Архангельск: РИО АГТУ, 1996. 56 с.
- 2. *Морозов С.И., Морозов В.С.* Классическая теория удара: Конспект лекций по соударению плоских тел. Архангельск: Изд-во АГТУ, 1999. 45 с.
- 3. *Морозов С.И*. Соударение автомобилей // Лесн. журн. 1999. № 4. С. 43–49. (Изв. высш. учеб. заведений).
- 4. *Смирнов С.Л.* Компьютерная модель процесса соударения автомобилей // Лесн. журн. -2000. -№ 5-6 С. 113-118. (Изв. высш. учеб. заведений).

Архангельский государственный технический университет

Поступила 12.01.01

S.I. Morozov, S.L. Smirnov

Theoretical Base of Technique for Investigating Traffic Accidents

The technique for investigating traffic accidents is suggested. Mathematical substantiation of technique and solution of practical tasks are given.