Коэффициент и можно приближенно принять равным единице при заготовке леса современными валочными машинами, так как ветровая нагрузка воспринимается не корневой системой дерева, а захватно-срезающим устройством машины.

Для лесозаготовительных машин наибольшая опасность создается в случае мгновенного нарастания силы ветра, характеризующегося максимальным значением динамического коэффициента порыва $\beta = 1,91$. При этом, даже при небольших значениях силы ветрового напора, значение P_w будет достаточно велико, и им нельзя пренебречь.

На основании изложенного были определены значения P_w и M_w для следующих данных: диаметр дерева на высоте груди $d_{1,3}=30$ см, высота дерева H=21 м, ширина кроны B=4 м, $H_\kappa=5$ м, $\beta=1$. Результаты расчетов приведены в табл. 2. Из нее следует, что даже при слабом ветре изгибающий момент достигает значительных величин и способен привести к существенному увеличению нагрузок на рабочие органы лесозаготовительных машин.

Поступила 27 декабря 1989 г.

УДК 629.114.45

ТРАНСПОРТНАЯ СИСТЕМА ДЛЯ ПЕРЕВОЗКИ КРУПНОГАБАРИТНЫХ ГРУЗОВ ПО БЕЗДОРОЖЬЮ

В. Д. ЕСАФОВ, Н. Н. СМИРНОВ

Архангельский лесотехнический институт

Для перевозки леса в настоящее время применяют колесные, гусеничные или смешанные поезда, включающие в себя тяговые и прицепные единицы. Недостатком таких транспортных систем является ограничение установочной мощности двигателя по сцеплению движителя тяговой машины с дорогой. Например, при движении системы по снежной целине сопротивление движению возрастает, а сцепление колес или гусениц с верхним покрытием трассы резко снижается. При движении по гладкому ледяному покрытию рек и озер использовать снижение сопротивления перемещению транспортной системы не удается из-за буксования движителя тяговой единицы*.

Рассмотрим транспортную систему, состоящую из тяговой и прицепной единицы. Сила тяги по сцеплению тягача с дорогой P_{ω} :

$$P_{\varphi} = mg\varphi, \tag{1}$$

где

m — масса тяговой единицы;

g — ускорение свободного падения;

ф — коэффициент сцепления движителя тягача с дорогой.

Касательная сила тяги машины по мощности двигателя находится по известной формуле механики

$$P_{\tau} = \frac{10^3 N_{\ell}}{V} \eta_{\rm rp},\tag{2}$$

где

 N_e — эффективная мощность двигателя;

V — скорость движения транспортной системы;

 $\eta_{\text{тр}}$ — кпд трансмиссии.

^{*} Есафов В. Д., Есафова З. Я., Жигалов А. М. Преимущества импульсной транспортной системы при движении по бездорожью // Лесн. журн.— 1987.—. № 5.— С. 40—44.— (Изв. высш. учеб. заведений).

^{4 «}Лесной журнал» № 3

Для реализации силы тяги по мощности двигателя необходимо выполнение условия: $P_{\omega} \geqslant P_{\tau}$. После подстановки и преобразований имеем '

$$m \geqslant \frac{10^3 N_e}{g \varphi V} \eta_{\rm rp}. \tag{3}$$

Как видно из формулы (3), для реализации силы тяги по мощности двигателя приходится искусственно завышать сцепную массу тяговой единицы.

При движении транспортной системы по бездорожью коэффициент сцепления варьирует в широком диапазоне, поэтому высока вероятность буксования тягача на отдельных участках трассы. Вместе с тем, значительно увеличивается сила сопротивления $F_{\mathbf{c}}$ перекатыванию транспортной системы в целом, например, при движении ее по снежной целине или болотистой местности:

$$F_{c} = [m + m_{ro}(1 + v + \mu)] g f_{1}. \tag{4}$$

Здесь f_1 — коэффициент сопротивления качению транспортной $m_{\rm rp}$ — масса груза;

$$\gamma = \frac{m_{\Phi}}{m_{\Gamma p}}; \qquad \mu = \frac{nm_{\tau}}{m_{\Gamma p}},$$

где

 m_{Φ} — масса грузовой платформы;

 $m_{\scriptscriptstyle {\bf T}}$ — масса тележки;

п — число тележек.

При ускоренном движении системы имеем $P_{\omega} > F_{\rm c}$, отсюда с учетом уравнений (1) и (4) получим:

$$m > \frac{(1 + v + \mu) f_1}{\varphi - f_1} m_{\rm rp}.$$
 (5)

Формула (5) еще раз подтверждает необходимость увеличения массы тяговой машины. Так, при $\dot{\varphi}=f_1,\,m>\infty$, т. е. тягач не только не сможет перевозить груз, но и сам утратит проходимость.

Значение потребной мощности привода можно получить совместным решением уравнения (3) и (5)

$$N_e = \frac{\varphi f_1 g V (1 + v + \mu)}{10^3 \eta_{\rm TP} (\varphi - f_1)} m_{\rm TP}.$$
 (6)

Для повышения проходимости системы используют активные полуприцепы и прицепы. Это значительно усложняет конструкцию.

Реализация крутящего момента на ведущих колесах прицепа, при движении по слабым грунтам, вызывает срезание верхнего покрова земли и приводит к погружению колес в грунт; система теряет подвижность.

В даннои работе предлагается использовать для активного цепа импульсный движитель, что позволит обеспечивать движение транспортной системы в трудных условиях. Колеса такого прицепа будут выполнять роль опорных катков, что приведет к снижению повреждений грунта и увеличению проходов системы по одному следу.

На рис. 1 показана модель транспортной системы для перевозки крупногабаритных грузов с использованием импульсного движителя прицепа. Система состоит из тяговой единицы, оснащенной гидравлической станцией, и щарнирно закрепленной несущей рамы, опирающейся на тележки.

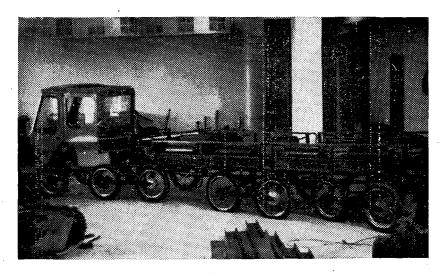


Рис. 1

Схема сочленения тележки с рамой дана на рис. 2. Несущая рама 1 может перемещаться относительно тележки за счет силового гидроцилиндра 2, установленного между рамой и кареткой 3 с роликовой

дорожкой. Балансир тележки 6 шарнирно связан с кареткой посредством реактивной тяги 4 и гидродемпфера 5. Гидродемпферы тележек объединены в две группы по принципу сообщающихся сосудов по обе стороны несущей рамы, что позволяет сохранять положение платформы близким к горизонтальному при прохождении неровностей и обеспечивает равномерность распределения, нагрузки на все колеса тележки, независимо от их положения.

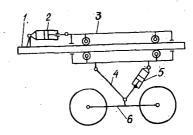


Рис. 2

Транспортная система работает следующим образом. При движении по хорошей дороге или под уклон система работает по обычной схеме, т. е. перемещается за счет касательной силы тяги, приложенной к ведущим колесам тягача. При движении по бездорожью, ледяному покрову или по крутому подъему дороги тяговая единица превращается в пассивную тележку с ведомыми колесами.

При трогании с места включаются в работу силовые гидроцилиндры, и тягач движется, увлекая за собой раму с грузом. Они перемещаются по «роликовой дорожке», опорные тележки в это время неподвижны. В дальнейшем, за счет последовательного включения гидроцилиндров, тележки поочередно подтягиваются к тяговой единице. Движение системы может быть как дискретным, так и непрерывным. Это зависит от состояния трассы и мощности гидропривода.

В случае дискретного движения при перемещении тягача с грузовой платформой (тягач работает как пассивная тележка)

$$F_{c} = [mf_{1} + m_{rp}(1 + \nu) f] g; \qquad (7)$$

$$P_{\varphi} = m_{\rm rp} (1 + \nu + \mu) g \varphi, \tag{8}$$

где f — коэффициент сопротивления перемещению платформы по роликам. Решая совместно уравнения (7) и (8) при $P_{\scriptscriptstyle \varpi} > F_{\scriptscriptstyle \rm C}$, получим:

$$m < \frac{m_{y}}{f} \left[(1+v)(\varphi - f) + \mu \varphi \right]. \tag{9}$$

Таким образом, при импульсном движении системы масса тяговой единицы должна быть, по возможности, меньшей. Мощность двигателя при дискретном движении системы принципиально может быть весьма малой, так как в данном случае легко выполняется «золотое» правило механики: «проиграл в скорости — выиграл в силе».

Масса транспортируемого груза теоретически не ограничена, в

чем легко убедиться с помощью основного закона механики:

$$m_{\rm rp} = \frac{F_{\rm u} - m (a + f_1 g)}{(1 + \mathbf{v})(a + f g)}, \tag{10}$$

где

 F_n — усилие в гидроцилиндрах; a — ускорение в движении груза.

Предлагаемая нами транспортная система с успехом может быть использована для прямой вывозки леса без веток и усов в условиях делянки, для перевозки крупногабаритных грузов в условиях пустынь и полупустынь, тундры, а также при движении по ледяному и снежному покрытию. При движении по бездорожью колеса можно оборудовать гусеницей, при движении по снежной целине — санными полозьями.

Тяговые усилия в гидроцилиндрах и скорость движения системы регулируются автоматически в зависимости от качества опорной по-

верхности.

Поступила 8 января 1990 г.

УДК 630*383.2.001.2

О РАСЧЕТЕ НА ПРОЧНОСТЬ ОСНОВАНИЙ ЗИМНИХ АВТОМОБИЛЬНЫХ ДОРОГ НА БОЛОТАХ

В. С. МОРОЗОВ СевНИИП

Участки зимних лесовозных автомобильных дорог, проходящие по болотам, имеют в основании слой мерзлого торфа, на который может быть уложен бревенчатый настил (сплошной или прореженный) и устроена насыпь из минерального грунта. Методы расчета таких оснований приведены в работах [2—4] и ряде других. Они рассматривают основание как плиту (балку), лежащую на упругом полупространстве, обладающем винклеровскими свойствами.

Существенной особенностью слоя мерзлого торфа является то, что его физико-механические свойства (в частности модуль упругости) зависят от температуры торфа [1] и вида деформации (сжатие или растяжение). Модуль упругости по глубине основания изменяется от некоторого максимального значения до величины модуля упругости талого торфа. В существующих методах расчета эта особенность учиты-

вается приблизительно, что отражается на их точности.

Для исследования напряженно-деформированного состояния изгиба плиты (балки) с переменным модулем упругости по ее толщине необходимо знать положение нейтральной оси и характер распределения напряжений в поперечном сечении. Методика решения такой задачи рассмотрена в настоящей статье с учетом анизотропных свойств мерэлого торфа на сжатие и растяжение. При составлении расчетных зависимостей использована общепринятая гипотеза плоских сечений.