

УДК 539.3:630*31

С.И. Морозов, Д.Н. Шостенко

Морозов Станислав Иванович родился в 1929 г., окончил в 1952 г. Ленинградскую лесотехническую академию, доктор технических наук, профессор, заведующий кафедрой теоретической механики Архангельского государственного технического университета, член-корреспондент РИА, заслуженный деятель науки и техники РФ. Имеет более 160 печатных работ в области изучения устойчивости температурно-напряженного рельсового пути, закрепления его от угона рельсов, удара тел, применения ЭВМ при решении задач механики.

УРАВНЕНИЕ СВЯЗИ ДЛЯ РЕШЕНИЯ ЗАДАЧ УДАРА

Дан вывод уравнения, связывающего основные расчетные параметры классической и контактной теории удара.

удар, классическая теория, контактная теория, коэффициенты нелинейности n, пластичности B и восстановления ε , связь между ними.

В лесной промышленности (на лесозаготовках, лесоскладских работах, сухопутном и водном транспорте леса) часто встречаются случаи ударного взаимодействия тел, которые влияют на отдельные технологические процессы, деформацию тел и их движение после удара.

Для решения задач удара требуется применять специальные математические зависимости и специфические методики. Эти способы изложены в литературных источниках [5], но они требуют дальнейшего развития.

В настоящее время при изучении процесса удара широко используют классическую и контактную теории. Каждая из них имеет преимущества и недостатки, позволяет найти свой круг расчетных величин. Но между этими теориями имеется определенная связь, с помощью которой можно найти практически все величины, характеризующие процесс удара, т. е. разработать сквозной метод решения таких задач.

Классическая теория [3] основана на работах Г. Галилея и И. Ньютона. Она использует основные теоремы механики: об изменении количества движения, моментов количества движения, кинетической энергии и др.

С помощью формул классической теории можно определить импульсы ударных сил, линейные скорости центров масс и угловые скорости вращения тел после удара, а также решить много других задач на прямой и косой удар двух тел.

И. Ньютоном было введено понятие коэффициента восстановления є, который определяет потерю механической энергии тел после удара. Значе-

ния ε находят экспериментально (при упругом ударе $\varepsilon = 1$, при неупругом $\varepsilon = 0$, в общем случае частично упругого удара $0 < \varepsilon < 1$). Классическая теория связывает относительные скорости центров масс тел до и после удара:

$$\bar{u}_n \bar{n} = -\varepsilon \bar{V}_n \bar{n} , \qquad (1)$$

где v_n – относительная скорость центров масс тел до удара, $v_n = v_2 \pm v_1$;

 u_n – то же после удара, $u_n = u_2 \pm u_1$;

 $\overline{V}_{n}\overline{n}$; $\overline{u}_{n}\overline{n}$ — проекции относительных скоростей на линию удара, расположенной по нормали к поверхности тел в точке соударения.

Недостатком классической теории является невозможность определить ряд величин: максимальную силу удара F_m , полное время удара τ и максимальную деформацию тел α_m в точке удара, которые требуется знать при решении отдельных задач.

Способы определения этих величин рассмотрены в контактной теории удара. Она основана на использовании так называемой силовой функции [4], которая в общем случае имеет вид

$$F = B\alpha^n, \tag{2}$$

где F — текущая сила удара;

B – коэффициент пластичности;

α – текущая деформация тел в точке их соударения;

n — коэффициент нелинейности.

В частном случае (соударение упругих тел) методика решения контактной теории удара предложена Г. Герцем, развита А.Н. Динником [2] и другими учеными.

Г. Герц нашел формулу для определения силовой функции при соударении упругих тел:

$$F = K\alpha^n, \tag{3}$$

где K – коэффициент Герца, зависящий от физико-механических характеристик материала μ , E,

$$K = \frac{4}{5} \left[\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right]^{-1} \sqrt{\frac{R_1 R_2}{R_1 + R_2}} ; \tag{4}$$

 μ_1 , μ_2 – коэффициенты Пуассона;

 E_1 , E_2 – модули упругости материалов тел;

 R_1 , R_2 – радиусы поверхности тел в точке соударения;

n для упругих тел равен $\frac{3}{2}$.

Контактная теория разработана только для прямого центрального удара. Ее нельзя применять для косого удара и соударения вращающихся тел, что позволяет классическая теория удара.

Объединяя классическую и контактную теории удара, можно значительно расширить круг задач и получить общую теорию удара, предназначенную для решения большинства задач.

Цель настоящей статьи — вывод зависимостей, связывающих величины ε , B и n в общем виде, и их анализ.

При решении задач удара с помощью контактной теории были получены следующие расчетные выражения [4]:

а) максимальная деформация тел в точке удара

$$\alpha_m = \left\lceil \frac{(1-n)Mv_n^2}{2B} \right\rceil^{\frac{1}{1+n}}; \tag{5}$$

б) максимальная сила удара

$$F_m = B\alpha_m^n; (6)$$

в) остаточная деформация тел в точке соударения после удара

$$\alpha_1 = \alpha_m - \left(\frac{B\alpha_m^n}{K}\right)^{\frac{2}{3}};\tag{7}$$

г) относительная скорость движения тел после удара

$$u_n = \sqrt{\frac{4K}{5M}(\alpha_m - \alpha_1)^{2,5}};$$
 (8)

д) полное время удара

$$\tau = \frac{\alpha_m}{V_n} \varphi_1 + \frac{\alpha_m - \alpha_1}{u_n} \varphi_2, \tag{9}$$

где ϕ_1 , ϕ_2 – множители, выражаемые через гамма-функции,

$$\phi_{1} = \frac{\sqrt{\pi}\Gamma\left(\frac{1}{1+n}\right)}{(1+n)\Gamma\left(\frac{3+n}{2(1+n)}\right)};$$

$$\phi_{2} = \frac{\sqrt{\pi}\Gamma \cdot 0.4}{2.5\Gamma \cdot 0.9} = 1,4725.$$

Множитель ϕ_2 является постоянной величиной, так как на стадии разгрузки n=3/2, а ϕ_1 зависит от значения n на стадии загрузки.

Буквой M в уравнениях (5) и (8) обозначена приведенная масса тел:

$$M = \frac{1}{m_1} + \frac{1}{m_2} = \frac{m_1 + m_2}{m_1 m_2} ,$$

где m_1, m_2 — массы соударяющихся тел.

Решая систему уравнений (1), (5), (7) и (8), получаем искомое уравнение связи. Процедура решения состоит в следующем:

а) возведем уравнение (8) в квадрат, т. е. найдем

$$u_n^2 = \frac{4K}{5M} (\alpha_m - \alpha_1)^{2,5};$$

б) подставим сюда выражение для разности $\alpha_m - \alpha_1$, которую найдем из уравнения (7):

$$u_n^2 = \frac{4K}{5M} \left(\frac{B\alpha_m^n}{K}\right)^{\frac{2}{3}};$$

в) подставим далее выражение для α_m из уравнения (5). Преобразовывая, получим

$$u_n^2 = \frac{4}{5} \left(\frac{1+n}{2}\right)^{\frac{5n}{3(1+n)}} \frac{K^{-\frac{2}{3}} B^{\frac{5(1+2n)}{6(1+n)}}}{M^{\frac{3-2n}{3(1+n)}}} V_n^{\frac{10n}{3(1+n)}};$$
 (10)

г) так как из уравнения (1) имеем $u_n^2 = \varepsilon^2 v_n^2$, то приведем (10) к виду

$$\varepsilon^{2} V_{n}^{2} = \frac{4}{5} \left(\frac{1+n}{2} \right)^{\frac{5n}{3(1+n)}} \frac{K^{-\frac{2}{3}} B^{\frac{5(1+2n)}{6(1+n)}}}{M^{\frac{3-2n}{3(1+n)}}} V_{n}^{\frac{10n}{3(1+n)}}.$$
 (11)

Отсюда находим

$$\varepsilon = \left[\frac{4}{5} \left(\frac{1+n}{2} \right)^{\frac{5n}{3(1+n)}} \frac{K^{-\frac{2}{3}} B^{\frac{5(1+2n)}{6(1+n)}}}{M^{\frac{3-2n}{3(1+n)}}} V_n^{\frac{4n-6}{3(1+n)}} \right]^{\frac{1}{2}}.$$
 (12)

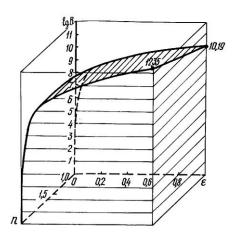
Из уравнения (11) можно, зная ε и n, выразить B:

$$B = \left[\frac{5\varepsilon^2}{4\left(\frac{1+n}{2}\right)^{\frac{5n}{3(1+n)}}} K^{\frac{2}{3}} M^{\frac{3-2n}{3(1+n)}} v_n^{\frac{6-4n}{3(1+n)}} \right]^{\frac{3(1+n)}{5}}.$$
 (13)

Таким образом, нами получены два уравнения (12) и (13), связывающие классический и контактный способ решения задач удара. Зависимость между ε , n и B наглядно продемонстрирована гистограммой на рисунке, построенной для M=1500 кг, $v_n=10$ м/с, $K=2\cdot 10^{11}$ и различных значениях ε , n и B.

По оси абсцисс гистограммы отложены значения n, ординат — значения ϵ , аппликат — значения $\lg B$.

В данном случае диапазон изменения n составляет: $1 \le n \le 1,5$. Если n=1, то зависимость $F_{yд}$ (α) является линейной, если n=1,5 — упруголинейной. Это справедливо при соударении таких тел, поверхность хотя бы одного из которых имеет вид поверхности второго порядка (шар, эллипсоид, параболоид, гиперболоид). Случаи n>1,5 в теории не рассмотрены, но экспериментально они встречаются [1].



Величина ϵ изменяется во всем ее возможном диапазоне: $0 \le \epsilon \le 1$. С помощью гистограммы можно, в принципе, найти B для любого случая частично-упругого удара.

По вертикальной оси отложены значения $\lg B$. Это вызвано тем, что значения B при различных комбинациях величин ϵ и n могут отличаться друг от друга на 3-5 порядков, что неудобно для графического построения.

Поверхность, ограничивающая гистограмму сверху, является плавной, не имеет разрывов или каких-либо других особых точек и дает ясное представление о характере зависимости $B(n, \varepsilon)$, т. е. однозначно связывает параметры, характеризующие классическую и контактную теории удара.

Во всяком случае ясно, что такая связь существует, т. е. эти теории не являются противоречивыми. Отметим, что в статье рассмотрен случай прямого центрального удара. Случаи косого удара, соударения вращающихся тел и т. д. в контактной теории пока не рассмотрены, поэтому говорить об их связи с классической теорией еще рано.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Батуев Г.С.* и др. Инженерные методы исследования ударных процессов / Г.С. Батуев, Ю.В. Голубков, А.К. Ефремов, А.А. Федосов. М.: Машиностроение, 1969. 240 c.
- 2. *Динник А.Н.* Удар и сжатие упругих тел. Избр. тр. Т. 1. Киев: Изд-во АН УССР, 1952. С. 3–114.
- 3. *Морозов С.И., Морозов В.С.* Классическая теория удара: Конспект лекций по соударению плоских тел. Архангельск: Изд-во АГТУ, 1999. 45с.
- 4. *Морозов С.И., Попов М.В.* Контактная теория удара: Конспект лекций по элементарной теории. Архангельск: Изд-во АГТУ, 1999. 42с.
- 5. *Пановко Я.Г.* Введение в теорию механического удара. М.: Наука, 1977. 224 с.

Архангельский государственный технический университет

Поступила 25.03.01

S.I. Morozov, D.N. Shostenko

Equation of Connection for Solving Problems of Impact

The equation is derived connecting the basic calculation parameters of the classical and contact impact theory.