Таким образом, и в условиях Среднего Урала еловые древостои активно реагируют на осущение и увеличивают прирост по радиусу в 1,1—1,5 раза без выраженного срока адаптации, что обусловлено биологией породы. Сосновые же древостои, напротив, имеют четко выраженный период адаптации, равный 5 годам. В этот период приросты по радиусу несколько снижаются. По истечении этого срока начинается устойчивое увеличение прироста, который, вероятно, стабилизируется после первого десятилетия осущения.

ЛИТЕРАТУРА

[1]. Антанайтис В. В., Загреев В. В. Прирост леса.— М.: Лесн. пром-сть, 1962.— 240 с. [2]. Бабиков Б. В., Тимофеев А. И. Эффективность осушения лесных земель в Ленниградской области.— В кн.: Сб. статей по итогам договорных научно-исследовательских работ за 1976—1977 гг. М.: Лесн. пром-сть, 1979, с. 83—89. [3]. Битвинскас Т. Т. Дендроклиматические исследования.— Л.: Гидрометеоиздат, 1974.— 160 с. [4]. Вомперский С. Э. Биологические основы эффективности лесоосушения.— М.: Наука, 1968.— 210 с. [5]. Вомперский С. Э., Сабо Е. Д., Формин А. С. Лесоосушительная мелиорация.— М.: Лесн. пром-сть, 1975.— 294 с. [6]. Залитис П. П. Динамика сезонного прироста деревьев в осушенных сосияках и ельниках осоково-тростниковых: Автореф, дис. . . . канд. с.-х. наук.— Елгава, 1967.— 25 с. [7]. Звиедрис А. И., Сацениекс Р. О. О влиянии климатических факторов на ширину годичных слоев ели.— Изв. АН ЛатССР, 1960, № 3, с. 177—184. [8]. Комин Г. Е. Влияние циклических колебаний климата на рост и возрастную структуру девственных насаждений заболоченных лесов.— Изв. СО АН СССР. Сер. биол.-мед. наук, 1963, вып. 3, № 12, с. 16—24. [9]. Леонтьев Н. Л. Техника статистических вычислений.— М.: Лесн. пром-сть, 1966.— 250 с. [10]. Рубцов В. Г., Киизе А. А. Закладка и обработка пробных площадей в осушенных насаждениях.— Л.: ЛенНИИЛХ, 1974.— 58 с. [11]. Рубцов В. Г., Киизе А. А. Ведение хозяйства в мелиорированных лесах.— М.: Лесн. пром-сть, 1981.—120 с. [12]. Рубцов В. Г., Кузнецов А. Н., Книзе А. А. Анализ роста осушенных и разреженных древостоев.— Л.: ЛенНИИЛХ, 1975.— 54 с. [13]. Адет ter Sh. R., Glock W. S. An annotated bibliography of tree growth and growth rings 1950—1960.— Tucson: Univ. Ariz. Press, 1965.— 179 р.

Поступила 27 июня 1985 г.

УДК 581.1.: 631.524

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА НЕКОТОРЫХ ПОКАЗАТЕЛЕЙ БАРХАТА АМУРСКОГО В УСЛОВИЯХ ПОВОЛЖЬЯ И В АРЕАЛЕ

Н. В. КРЕЧЕТОВА

Марийский политехнический институт

Бархат амурский — единственный в СССР дикорастущий пробконос промышленного значения. Предпринимаются действенные меры по восстановлению его в пределах ареала, так как запасы убывают.

Как растение реликтовое бархат амурский в ареале зеленеет поздно: только во второй половине или конце мая, цветет в конце июня, листва желтеет в сентябре.

Это ценный медонос, меду из бархатовых цветов приписывают противотуберкулезное свойство. Бархат известен как краситель. Древесина отличается красивой текстурой. Кора дает материал для изоляционных плит и спасательных арматур.

В Западной Европе культивируется с 1856 г. (в Ленинграде). В культурах качество пробки улучшается. По данным Н. В. Усенко*, культура успешно растет всюду южнее линии Ленинград — Ки-

^{*} Усенко Н. В. Деревья, кустарники и лианы Дальнего Востока.— Хабаровск: Хабаровск. кн. изд-во, 1969.— 413 с.

ров — Свердловск — Томск — Красноярск — Иркутск — Комсо-

мольск-на-Амуре — Советская Гавань.

Это позволяет считать, что на территории Марийской республики возможно выращивание бархата амурского в промышленных целях. Для подтверждения этого положения исследованы биологические показатели особей бархата, произрастающих в Марийской АССР, и сделано сопоставление с аналогичными показателями у деревьев в районах его естественного ареала.

Исследования проводили в дендрариях Хабаровска и Йошкар-Олы на молодых деревьях бархата, растущих на свободе и хорошо ос-

вешенных.

Таблица 1 Фазы развития бархата амурского

Фазы развития	Дальний Восток, Хабаровский край	Среднее Поволжье
Набухание почек Раскрывание почек Начало облиствения Полное облиствение Начало пожелтения листьев Полное пожелтения листьев Начало опадения листьев Конец листопада Начало цветения Конец цветения Начало созревания плодов Конец созревания плодов	15.V 19.V 25.V 13.VI 15.IX 20.IX 20.IX 20.IX 27.VI 15.VI 27.VI 10.IX 5.X	12.V 17.V 27.V 5.VI 30.VIII 23.IX 13.IX 6.X 16.VI 22.VI 2.IX 16.IX
Продолжительность вегетационного периода, дн	143	136

По данным табл. 1 можно отметить близкие даты начала вегетации бархата амурского. В условиях Среднего Поволжья немного скорее созревают плоды и несколько короче период вегетации. Данные о продолжительности вегетации бархата в Среднем Поволжье занимают среднее положение между данными по Хабаровску и Амурской области, где период вегетации составляет 130 дн.

Один из важных показателей состояния растительного организма — продуктивность фотосинтеза. Ее показатели могут дать сравнительную характеристику особей, находящихся в ареале и за его пределами. Определения этого показателя, проведенные в одинаковые числа июля и августа, свидетельствуют о высокой активности листового аппарата в условиях интродукции. Результаты исследования чистой продуктивности фотосинтеза представлены в табл. 2.

Таблица 2 Продуктивность фотосинтеза бархата амурского в ареале и в районе интродукции

Район произрастания	Характеристика вегета- ционного периода	Чистая продуктивность фотосинтеза, мг/(см² - сут)			
			Женский побег		
		Мужской побег	без плодов	с пло- дами	
Хабаровский край	Теплый, умеренно влажный Недостаточно теплый, сухой	0,39 0,14	1,4 0,5	0,40 0,21	
Марийская АССР Избыточно теплыі Недостаточно тепл ный	Избыточно теплый, сухой	0,74	1,62	_	
	1 ''	0,82	0,71	0,45	

Сопоставление работы листьев мужских особей на одну дату (с 16 по 23 июля) в годы, характеризующиеся разными погодными условиями, позволяет отметить, что условия Марийской АССР способствуют достаточно высокому накоплению продуктов фотосинтеза как в год теплого лета, так и относительно холодного. В условиях и Дальнего Востока, и в Поволжье более высокую продуктивность фотосинтеза обеспечивает длительный период обилия солнечного света.

Обращает на себя внимание тождественность динамики сухой массы листьев в различные вегетационные периоды (табл. 3). Аналогично изменяется чистая продуктивность фотосинтеза.

Таблица 3 Динамика сухой массы листьев бархата амурского в разных районах произрастания

Район произрастания	Характеристика вегета-	Сухая масса листьев бархата амурского, г			
	ционного периода	14 июля	16 июля	24 нюля	
Хабаровский край	Избыточно теплый, умеренно влажный	<u>420</u> 320	520 400	552 364	
	Недостаточно теплый, су- хой	408 240	370 396	424 274	
Марийская АССР	Избыточно теплый, сухой	$- \frac{450}{430}$		490 460	
•	Недостаточно теплый, влажный	<u>430</u> 390	426 420	515 420	

Примечание. В числителе — данные для женских особей; в знаменателе — для мужских. Площадь пробы 785 см².

По данным табл. 3 можно отметить аналогичный характер различий между мужскими и женскими особями в пределах ареала и районе интродукции и изменение интенсивности накопления сухой массы в зависимости от погодных условий вегетационного периода. Большую массу имеют листья бархата амурского во влажные годы и меньшую — в сухие. Биологические процессы в листьях происходят при участии воды, поэтому водный режим может быть показателем, отражающим обеспеченность условий протекания процессов жизнедеятельности.

Таблица 4 Среднее количество воды, г, в листовых пластинках площадью 785 см²

Район произрастания	Характеристика вегета- ционного периода	Количество влаги у деревьев		
			женского	
		мужского	с пло- дами	без плодов
Хабаровский край	Теплый, умеренно влажный Недостаточно теплый, су-	763		853
	хой	657	749	713
Марийская АССР	Избыточно теплый, сухой Недостаточно теплый,	670		630
	йнжака	600	790	670

Оводненность листьев не является величиной постоянной, изменяется по годам и в зависимости от сексуализации (табл. 4). Больше воды необходимо побегам, на которых формируются плоды, и меньше — мужским особям.

Водоудерживающая способность листьев может свидетельствовать о разном содержании белков и других веществ в листьях.

Таблица 5 Водоудерживающая способность листьев бархата амурского в ареале и районе интродукции

Район произрастания	Характеристика вегета- ционного периода	Относительная влажность листьев, %		Водоудерживающая способность за 2 ч, %	
		муж- ских осо- бей	женских особей	муж- ских осо- бей	женских особей
Хабаровский край	Теплый, умеренно влажный	70,6	67,3	93,35	94,69
Марийская АССР	Избыточно теплый, сухой	68,3	66,4	89,20	90,03
	Недостаточно теплый, влажный	66,5	65,27	94,60	94,90

По данным табл. 5 изменения показателей относительной влажности очень близки во всех вариантах исследования как на родине бархата амурского, так и в районе его интродукции. В обоих случаях несколько выше водоудерживающая способность у женских особей, чем у мужских.

Таким образом, проведенные исследования показывают, что целе-сообразность интродукции бархата амурского в Марийскую республику, т. е. в левобережье Средней Волги, обоснована.

Процессы жизнедеятельности листьев в условиях интродукции проходят в параметрах, близких к аналогичным в районе ареала. Резких отклонений не обнаруживается, если особи растут в условиях достаточного освещения и почвенного питания.

Интродуцировать бархат амурский следует не только с целью получения пробки, которая в ряде случаев с успехом заменяется искусственной, но, что важнее, как ценный медонос и высокоэффективное лекарственное растение.

Поступила 22 апреля 1986 г.

УДК 630*5

МОДЕЛЬ РОСТА ДРЕВОСТОЕВ И ЕЕ ПРИМЕНЕНИЕ ДЛЯ ВЫРАВНИВАНИЯ ТАКСАЦИОННЫХ ПОКАЗАТЕЛЕЙ

А. Л. ГУТМАН, М. А. ГУТМАН

Воронежский лесотехнический институт

1. К настоящему времени создано много моделей роста древостоев. Так, Н. Н. Свалов [2] приводит 13 функций, применявшихся для моделирования роста древостоев в высоту, первая из которых относится к 1878 г., последняя — к 1974 г. Он же приводит результаты анализа большей части приведенных функций другими авторами и на большом экспериментальном материале исследует три наиболее подходящие из них:

Корсунь (1935)

$$y = \frac{t^2}{a + bt + ct^2}; \tag{1}$$

Дракин и Вуевский (1940)

^{2 «}Лесной журнал» № Б