УДК 676.1.022

Э.И. Гермер

Гермер Эмиль Исаакович родился в 1937 г., окончил в 1962 г. Ленинградский технологический институт целлюлозно-бумажной промышленности, доктор химических наук, директор по новой технике, технологии и науке Северо-Западной лесопромышленной компании. Имеет свыше 160 научных трудов по химии и технологии варки целлюлозы, в настоящее время занимается технологией, химией и катализом новых и традиционных способов делигнификации древесины.

ХИМИЗМ ДЕЛИГНИФИКАЦИИ ПРИ ОРГАНОСОЛЬВЕНТНЫХ ВАРКАХ

С единых позиций рассмотрен химизм делигнификации при различных, наиболее типичных, вариантах органосольвентных варок: в среде алифатических кислот (уксусная, муравьиная) с участием окислителей (кислород, пероксид водорода) и без них; в водно-спиртовой кислой или щелочной среде с участием молекулярного кислорода и без него.

Ключевые слова: органосольвентная делигнификация, химизм, кислород, пероксикислоты, спирты.

Органосольвентные варки имеют ряд общих черт, главная из которых – большое количество органического растворителя в варочной системе, оказывающего существенное влияние не только на технологию, но и на физико-химию протекающих процессов. (Как правило, в системе растворитель - вода, используемой для получения целлюлозы с приемлемыми товарными свойствами, доля первого компонента составляет 30 ... 70 %, а в варках с чисто исследовательскими функциями – до 100 %). Это позволяет рассматривать химизм делигнификации при органосольвентных варках с единых позиций, независимо от того реализуются они в присутствии, например, окислителей или без них, в кислой или щелочной среде и т.п. Однако сосредоточение внимания на специфических особенностях химизма того или иного варианта органосольвентных варок зачастую происходит при недостаточном внимании к общим чертам, свойственным этим варкам в целом, при отсутствии их рассмотрения с единых химических позиций. Подобный подход препятствует правильному и всестороннему пониманию сущности таких работ и, может быть, в определенной мере даже тормозит прогресс в изучении химизма органосольвентной делигнификации. Попыткой в какойто степени ликвидировать указанный выше недостаток и является настоящая работа.

Большинство органосольвентных варок реализуется в кислой среде (pH 2-4). Именно эта среда имеется ввиду при дальнейшем описании химизма делигнификации во всех случаях, кроме последнего, где переход к рассмотрению делигнификации в щелочной среде специально оговорен.

Начальная стадия делигнификации сопровождается развитием гетеролитической реакции, ведущей к протонированию кислородного атома бензильной группировки с дальнейшим превращением этого интермедиата или в бензильный карбкатион, или непосредственно в продукт замещения α-эфирной группы тоже на эфирную, но имеющую в своем составе ацетильную, формильную, метоксильную, этоксильную и т.п. группировки – в зависимости от вида органического растворителя (схема 1):

Расщепление простых α -эфирных связей в обычных (без окислителя) органосольвентных варках считается основной реакцией, ведущей к фрагментации макромолекулы лигнина [12], которая может реализовываться с участием структур как со свободным, так и алкилированным фенольным (OH_{Φ}) гидроксилом (схема 1).

Кроме того, в результате расщепления простых α -эфирных связей не только в открытых α -алкил-арильных, но и в циклических фенилкумарановых структурах, содержание фенилпропановых единиц (ФПЕ) со свободным фенольным гидроксилом возрастает примерно в 1,5 раза (с 30–35 до 45–50 на 100 ФПЕ). Образующиеся при этом, а также содержащиеся в протолигнине структуры типа β -гваяцилового эфира гваяцилглицерина через интермедиат с протонированным бензильным атомом кислорода (схема 1, первая ступень) трансформируются в результате элиминирования β -протона и молекулы воды в структуры с двойной α = β связью, которые достаточно легко гидролизуются с расщеплением уже β -эфирной связи [12] (схема 2, основной маршрут). К аналогичным структурам с двойной α = β связью приводит и β -депротонирование бензильного карбкатиона, образующегося по схеме 1 (схема 2, маршрут 2). Указанный процесс β -депротонирования является лимитирующим при фрагментации лигнина в органосольвентных варках [5]:

$$H_2COA$$
 H_2COA
 H

Двойные α = β связи относительно стабильны в сольволитических процессах. Однако в присутствии окислителей типа кислорода или пероксидов эти связи легко расщепляются, что приводит к дополнительному и весьма важному каналу фрагментации лигнина. Механизм обсуждаемых реакций некоторыми исследователями предполагается свободнорадикальным [3, 5, 8]. Такая трактовка в значительной степени базируется на известном, достаточно легком образовании феноксильного радикала в составе фенолзамещенных структур вследствие делокализации спиновой плотности по системе сопряженных связей [3, 5] (схема 3):

Схема 2

A=H, A&k, Ac; R=H, Ar; R=A&k, Ar

Схема 3

К усилению фрагментации лигнина при кислородноорганосольвентных варках ведет также взаимодействие кислорода со структурами, имеющими кетонную группу в алкильной цепи, так как, кроме наличия таких структур в протолигнине, они образуются (в том числе и кетоны Гибберта) в обычной кислой органосольвентной варке при расщеплении β-эфирной связи [12] (см. схему 2), а также вследствие оксигенирования алкильной цепи ФПЕ лигнина нуклеофильными кислородсодержащими окислителями. На основании [3] эти взаимодействия представлены на схеме 4:

$$R = \bigcup_{OH}$$
; $R_1 = H, A\ell k, Ac$; $R_2 = Ar, A\ell k$

Суема Л

Под действием молекулярного кислорода, являющегося бирадикалом, также возможна его рекомбинация с резонансной формой феноксирадикала по C_3 - или C_5 -атомам ароматического ядра с последующим его раскрытием и образованием муконовокислых остатков [8].

Что касается реакций, ведущих к фрагментации лигнина при делигнификации пероксикислотами, образующимися как основные делигнифицирующие агенты при добавлении пероксида водорода в муравьиную или уксусную кислоты (в частности в способе MILOX), то их можно иллюстрировать схемами действия пероксиуксусной кислоты в кислой среде, предлагаемыми Гирером на основании результатов работ ряда исследователей с модельными соединениями лигнина [10]. Беря за основу гетеролитический механизм, Гирер полагает, что при этом активные центры лигнина атакуются катионами гидроксония HO^+ – электрофильными частицами, образуемыми пероксикислотами в кислой среде. Рассмотрим основные реакции, непосредственно ведущие к расщеплению макромолекулы лигнина (схемы 5, 6):

а) реакция расщепления α- и β-эфирных связей:

Схема 5

б) реакция вытеснения алкильной цепи:

Схема 6

Образование интермедиата с двойной $\alpha=\beta$ связью, получаемого в схеме 5 на первой ступени, можно представить и через депротонирование интермедиатов, характерных для кислой органосольвентной варки, — бензильного карбкатиона или структуры с протонированным бензильным атомом кислорода (схема 2, продукт второй ступени).

Ряд реакций с участием катиона гидроксония способствуют повышению реакционной способности лигнина, хотя непосредственно к фрагментации не ведут [10]. К ним можно отнести реакции прямого гидроксилирования ароматического ядра и деметилирования гваяцильных (сирингильных) ядер с образованием промежуточной *орто*-хинонной структуры.

Реакции расщепления ароматического ядра ведут к снижению степени ароматичности лигнина (схема 7):

Схема 7

Структуры с двойной α = β -связью в алкильной цепи через реакцию с гидроксонием [10] или с пероксирадикалом [3] через относительно стабильный эпокисный интермедиат способны, тем не менее, трансформироваться далее в предельные структуры с гидроксилом при β -C атоме.

Для органосольвентных варок, реализуемых в кислой среде как без окислителей, так и с окислителями (кислород, пероксикарбоновые кислоты и др.), характерны реакции внутримолекулярной (a) и межмолекулярной (b) конденсации [5, 7, 12] (схема 8):

H_COH
$$OCH_3$$
HC-O
HC OCH_3
 OR
 OR

Особенно эти реакции характерны при использовании муравьиной кислоты, имеющей кислотность на порядок выше, чем, например, уксусная.

Образующиеся конденсационные продукты, тем более в сочетании с ацилированием первичных и вторичных алифатических гидроксилов, затрудняют фрагментацию лигнина по α- и β-0-4 связям. Поэтому при варках в среде карбоновых кислот (особенно в среде муравьиной кислоты) при делигнификации снижается роль фрагментации лигнина и существенно возрастает роль его солюбилизации [7]. Появление в процессе варки наряду с муравьиной также и пероксимуравьиной кислоты позволяет (по-видимому, вследствие окислительной фрагментации лигнина) ускорить и, главное, углубить делигнификацию. Взаимосвязь процессов конденсации и фрагментации основных структур лигнина (типа β-гваяцилового и β-вератрилового эфира гваяцилглицерина) при одновременном присутствии в варочной системе муравьиной и пероксимуравьиной кислот изображена на схеме 9 [7]:

Вероятно, именно вследствие вышеуказанного в процессе MILOX для достижения достаточно глубокой степени делигнификации лигноцеллюлозного сырья необходимо иметь ступень или две со смесью пероксикарбоновой и карбоновой кислот и ступень с одной карбоновой кислотой, так как в случае варки только в смеси упомянутых двух кислот будет чрезмерно высок расход пероксида водорода, добавляемого в карбоновую кислоту для частичного ее окисления до пероксикарбоновой, а в случае варки только в среде карбоновой кислоты из-за развития конденсационных реакций при ацилировании гидроксилов алифатической цепи, препятствующем фрагментации лигнина, нельзя будет достичь достаточно высокой степени делигнификации лигноцеллюлозного сырья за приемлемое время при относительно невысокой температуре (80 ... 100 °C), обеспечивающей допустимую селективность делигнификации.

Известны органосольвентные, главным образом, спиртовые варки, реализуемые в щелочной среде. Так как варочный раствор в этих случаях содержит 30 ... 70 % воды, и к тому же спирт является родственным воде, хотя и органическим гидроксилсодержащим растворителем, реакции, характерные для этих варок, преимущественно обусловлены наличием в растворе щелочи и описаны для щелочных водных растворов во многих работах, наиболее обобщающими из которых можно считать работы Гирера с сотрудниками [9, 11]. Однако присутствие растворителя, безусловно, оказывает свое специфическое влияние на делигнификацию, способствуя расщеплению α-эфирных связей в структурах со свободным фенольным гидроксилом часто с алкилированием α-С атома [12] (схема 10):

R=H, Ar, Alk;
$$R_1$$
=HC $<_{OAr}^{CH_2OH}$; R_2 =Me, Et u r. π .

Cxema 10

или расщеплению β -0-4 эфирных связей (схема 11 или 12 – в зависимости от того, свободен или алкилирован фенольный гидроксил) [6, 9, 11, 12]:

R=H, Me, Et u r.n.

Схема 11

R = CH₂OH, CH₃; R₁=H, Me, Et
$$u r.n.$$
; Ar = $\frac{R}{C}$ -OAr $\frac{R}{C}$ -OA

Схема 12

При алкилированном фенольном гидроксиле в структурах типа β -гваяцилового эфира гваяцилглицерина фрагментация реализуется посредством нуклеофильной атаки ионизируемого в щелочной среде алкильного гидроксила в α -положении боковой цепи на соседний β -C атом с вытеснением ароксизаместителя и образованием оксиранового кольца, которое затем раскрывается с образованием вицинальных гидроксилов в алифатической цепи (см. схему 11) [6, с. 188; 12].

В случае ФПЕ со свободным фенольным гидроксилом первая ступень реакции – расщепление α-эфирной связи – предшествует образованию хинонметидного интермедиата, через который образуется структура типа изоэвгенола с последующим расщеплением β-эфирной связи (схема 12) [6, с. 191; 9; 11]. Однако и в структурах со свободной фенольной группой элиминирование β-арилэфирной группировки может частично проходить и по схеме 11, т.е. минуя образование промежуточного хинонметида. Однако это направление реакции является второстепенным [6, с. 191].

Как видно из схем 11 и 12, предварительное алкилирование α -ОН группы под действием спирта должно затруднять фрагментационные

превращения и, тем самым, делигнификацию. Однако отрицательное влияние органического растворителя перекрывается усилением (благодаря его присутствию) растворяющего действия спирта в отношении лигнина. Кроме того, в щелочной среде заметно меньше, чем в кислой, развиты конденсационные процессы. Все это приводит к большей селективности органосольвентного варочного процесса в щелочной среде по сравнению с кислой [2]. Это относится и к кислородно-органосольвентным (спиртовым) варкам, о чем свидетельствует повышение выхода целлюлозы (при равном числе Каппа) на 3 ... 5 % от массы древесины при кислородно-щелочно-спиртовых варках по сравнению с кислородно-спиртовыми [1, 4].

Как видно из вышеизложенного, химизм делигнификации при различных вариантах органосольвентных варок может быть рассмотрен с единых позиций преимущественно гетерологических превращений, независимо от того, с участием какого органического растворителя, в кислой или щелочной среде, в присутствии или отсутствии окислителя была реализована та или иная варка.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Гермер Э.И., Горенков Р.А.* Кислородно-щелочно-спиртовая варка древесины с катализатором // Целлюлоза, бумага, картон. 1992. № 10. С. 23 24.
- 2. *Гермер Э.И*. Сравнительные исследования кислотно-катализируемой и щелочной водно-спиртовой делигнификации // 7-я Всесоюзн. конф. по химии и использованию лигнина: Тез. докл. Рига, 1987. С. 107–108.
- 3. Дейнеко И.П., Ведерников Д.Н. О механизме оксисольволиза лигнина // Изв. СПб ЛТА. 1999. Вып.7(165). С. 71—79.
- 4. Дейнеко И.П. Оксисольволиз растительного сырья: достижения и перспективы // Изв. СПб ЛТА. 1998. Вып. 6(164). C. 91–100.
- 5. *Костнокевич Н.Г.* Делигнификация древесины кислородом в растворах уксусной кислоты: Автореф. дис.... канд. хим. наук. СПб, 1995. 16 с.
- 6. *Шорыгина Н.Н., Резников В.М., Елкин В.В.* Реакционная способность лигнина. М.: Наука, 1976. 368 с.
- 7. Ede R.M., Brunow G. Reactions of β -aryl ether lignin model compounds under formic acid and peroxyformic acid pulping conditions// The Intern. Symp. on Wood and Pulping Chemistry. Raleigh, -NC, -USA, May 22–25, 1989. Proceedings.
- 8. Evtuguin D.V., Deineko I.P. and Neto P. Oxygen delignification in aqueous organic solvents media // Cellulose Chem. and Technology. 1999. Vol. 33. P. 103–123.
- 9. *Gierer J.* The chemistry of delignification. A general concept. Part 1 // Holzforschung. -1982. -Bd. 36, N 1. -S. 43–51.
- 10. Gierer J. The chemistry of delignification. A general concept. Part $2\ //$ Holzforschung. 1982. Bd. 36, N 2. S. 55–64.
- 11. *Gierer J.* The reactions of lignin during pulping // Svensk Papperstidning. 1970. Vol. 73, N 18. P. 571–596.

12. $McDonough\ T.J.$ The chemistry of organosolv delignification // Tappi J. – 1993. – Vol. 76, N 8. – P. 186–193.

Северо-Западная лесопромышленная компания

Поступила 16.01.03

E.I. Germer

Chemistry of Delignification under Organosolv Cooking

The chemistry of delignification under different most typical variants of organosolv cooking is viewed from the uniform positions: in the aliphatic acids medium (acetic, formic acids) with oxidizing agents (oxygen and hydrogen peroxide) and without them; in aqueous-alcoholic acid or alkaline medium with molecular oxygen and without it.