УДК 624.131.52:624.139.2

В. С. Морозов, Г. С. Морозов

Морозов Владимир Станиславович родился в 1955 г., окончил в 1978 г. Архангельский лесотехнический институт, кандидат технических наук, доцент кафедры строительной механики и сопротивления материалов Архангельского государственного технического университета. Имеет около 50 печатных работ в области строительства и эксплуатации зимних лесовозных дорог.

Морозов Геннадий Станиславович родился в 1957 г., окончил в 1979 г. Архангельский лесотехнический институт, старший преподаватель кафедры строительного производства Архангельского государственного технического университета. Область научных интересов – расчет и проектирование сооружений из мерзлого торфяного грунта.

РАСЧЕТ ОСАДОК СООРУЖЕНИЙ НА ОСНОВАНИИ ИЗ МЕРЗЛОГО ТОРФА

Рассмотрен метод расчета осадок фундаментов сооружений на основании из мерзлого торфяного грунта с применением модели вязко-пластичного тела. Даны результаты расчетов осадки в любой момент времени действия нагрузки.

Ключевые слова: мерзлый торф, сжимаемость, вязко-пластичное тело, математическая модель, расчет осадок.

В настоящее время накоплен значительный опыт строительства различных гражданских и промышленных сооружений на заторфованных территориях. Расчет осадок фундаментов таких сооружений имеет важное практическое значение, так как без этого невозможно проектировать фундаменты согласно названным требованиям.

Для определения осадок сооружений применяют два метода: деформированного полупространства и по модели вязко-пластичного тела.

Цель нашей статьи — разработка метода расчета осадок фундаментов сооружений на основании из мерзлого торфяного грунта. Результаты расчета зависят от вида применяемой расчетной модели и имеют важное практическое значение.

Мерзлый торфяной грунт является четырехкомпонентной системой, характеризуется значительным содержанием незамерзшей воды (льда) и ползучестью органического скелета. Это обусловливает большую сжимаемость мерзлого торфа под нагрузкой по сравнению с минеральными грунтами.

Сжимаемость мерзлых грунтов представляет собой сложный физико-механический процесс, вызванный деформируемостью и перемещением

всех компонентов грунта: газообразных, жидких, вязко-пластичных и твердых. Кроме того, под влиянием внешней нагрузки нарушается равновесное состояние между незамерзшей водой и поровым льдом. При этом талая вода отжимается, что приводит к дополнительным осадкам оснований.

Осадки от перемещений незамерзшей воды составляют фильтрационно-миграционную часть деформации, которая равна примерно трети всего уплотнения. Деформируемость газов обусловливает упругие деформации. Остальная осадка приходится на долю ползучести, вызываемой необратимыми сдвигами частиц и их агрегатов.

Раздельно определить пластические и упругие составляющие деформации часто бывает очень трудно, поэтому при прогнозе осадок сооружений ограничиваются определением суммарной осадки по результатам лабораторных исследований или штамповых испытаний в полевых условиях.

Принимая мерзлый торфяной грунт за вязко-пластичное тело с коэффициентом вязкости η , определяем осадку фундамента под действием внешней нагрузки. Для этого используем решение задачи о распределении давления в тонких слоях вязкого материала при сжатии [1].

Так как размеры фундамента ограничены, то задачу рассматриваем как осесимметричную, представляя прямоугольный фундамент в виде круглого штампа радиусом R равновеликой площади.

Расчетная схема показана на рис. 1. Здесь H = 2h — толщина расчетного слоя; z — аппликата; r — полярный радиус; u, v — скорости течения грун-

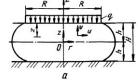
та соответственно в горизонтальном и вертикальном направлениях; q — интенсивность внешней нагрузки на рассматриваемый массив.

Для осесимметричной задачи скорость перемещения точек слоя в вертикальном направлении определяем по формуле [2]

$$v = \frac{v_0}{2h^3} \left(h^2 z - z^3 \right)$$
 (1)

а давление, вызывающее течение,

$$p = \frac{3v_0\eta}{4h^3} \left(R^2 - r^2 + 2z^2 \right)$$
 (2)


где v_0 – скорость перемещения точки массива на поверхности основания по оси z (где z=h);

η – расчетный коэффициент вязкости;

R – радиус площади действия внешней нагрузки.

Подставляя в уравнение (1) z = h, получаем $v = v_0$.

Величину v_0 можно выразить из уравнения (2). Полагая p = q, z = h, $v = v_0$ и r = 0, находим

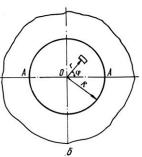


Рис. 1. Расчетная схема для определения осадки фундамента на основании из мерзлого торфа: a — сечение; δ —план

$$v = v_0 = \frac{4qh^3}{3\eta R^2 + 2h^2}$$
 (3)

Для того чтобы перейти к осадкам W_z , подставим в уравнении (3) $v = dW_z / dt$ и проинтегрируем:

$$W_z = \int_0^T \frac{4qh^3 dt}{3\eta_1 R^2 + 2h^2}$$
 (4)

где T – время действия нагрузки;

$$\eta_1 = 2(1+\nu)\eta,$$

где v – коэффициент Пуассона.

Переменными величинами в подынтегральном выражении являются время и табличный коэффициент вязкости η_1 .

В табл. 1 приведены значения η_1 в зависимости от времени действия нагрузки (t), температуры (Θ) и влажности мерзлого торфа (W) при q=0,25 МПа (числитель) и приращения $\Delta\eta_1$ (знаменатель).

Приращение $\Delta \eta_1$ хорошо аппроксимируется выражением

$$\Delta \eta_1 = a e^{bt}, \tag{5}$$

где a, b – коэффициенты, определяемые по приведенным в табл. 1 значениям $\Delta \eta_1$ при использовании метода наименьших квадратов.

Таблица 1

таолица т									
W 0/	0.00	Коэффициент $\eta_1 \cdot 10^{-13}$, $H \cdot c/cm^2$ (числитель) и его приращение							
W, %	Θ, °C	$\Delta \eta_1 \cdot 10^{-13}$, H·c/cм ² (знаменатель) в различные моменты времени t , ч							
		0	20	40	60	80	100	120	
300 -3	2	8,3262	8,7233	9,1436	9,5994	10,0811	10,5956	11,1457	
	-3		0,3970	0,4243	0,4518	0,4817	0,5144	0,5502	
	-8	11,5218	11,9197	12,3376	12,7752	13,2336	13,7149	14,2199	
	-0	11,5216	0,3979	0,4178	0,4376	0,4586	0,4811	0,5050	
	-17	9,1736	9,4211	9,6778	9,9436	10,2193	10,5051	10,8015	
400			0,2475	0,2567	0,2659	0,2756	0,2857	0,2964	
	-25	8,1078	8,3668	8,6372	8,9191	9,2132	9,6202	9,8408	
			0,2590	0,2704	0,2819	0,2941	0,3070	0,3207	
	-3	4,4694	4,6845	4,9144	5,1593	5,4206	5,6996	5,9980	
			0,2152	0,2299	0,2449	0,2612	0,2790	0,2985	
	-8	7,7565	8,0485	8,3563	8,6793	9,0206	9,3794	9,7579	
			0,2920	0,3079	0,3236	0,3407	0,3589	0,3784	
	-17	9,2627	9,5362	9,8187	10,1126	10,4182	10,7364	11,0678	
			0,2735	0,2853	0,2938	0,3067	0,3182	0,3314	
	-25	7,2846	7,5760	7,8885	8,2184	8,5670	8,9357	9,3263	
			0,2914	0,3125	0,3299	0,3486	0,3688	0,3905	
500	-3	2 9164	4,0092	4,2171	4,4394	4,6775	4,9328	5,2072	
500	-3	3,8164	0,1928	0,2079	0,2223	0,2381	0,2550	0,2748	

Продолжение табл. 1

Прооблясение табл. 1								
		Коэффициент $\eta_1 \cdot 10^{-13}$, $H \cdot c/cm^2$ (числитель) и его приращение						
W, %	Θ, °C	$\Delta \eta_1 \cdot 10^{-13}$, H·c/cм ² (знаменатель) в различные моменты времени t , ч						ни <i>t</i> , ч
		0	20	40	60	80	100	120
500	-8	6,1021	6,3520	6,6168	6,8965	7,1923	7,5054	7,8373
			0,2499	0,2648	0,2797	0,2958	0,3131	0,3319
	17	6.0526	7,1630	7,3812	7,6083	7,8448	8,0911	8,3480
	-17	6,9536	0,2094	0,2182	0,2271	0,2364	0,2464	0,2568
	-25	6,0886	6,3884	6,7105	7,0543	7,4228	7,8180	8,2428
			0,2998	0,3218	0,3441	0,3685	0,3952	0,4248
600	-3	3,8921	4,1022	4,3291	4,5731	4,8358	5,1193	5,4258
			0,2101	0,2269	0,2439	0,2627	0,2835	0,3066
	-8	5,2017	6,4337	5,6808	5,9432	6,2222	6,5192	6,8358
			0,2320	0,2471	0,2624	0,2790	0,2970	0,3166
	-17	6,3667	6,5681	6,7785	6,9980	7,2270	7,4662	7,7162
			0,2014	0,2104	0,2195	0,2291	0,2392	0,2499
	25	-25 5,4042	5,7202	6,0651	6,4391	6,8456	7,2887	7,7730
	-25		0,3161	0,3449	0,3740	0,4065	0,4430	0,4843

Полагая в (5), что отношение $\Delta\eta_1/\Delta t$ можно рассматривать как скорость изменения величины η_1 , переходя к дифференциалам и интегрируя, получаем

$$\eta_1 = \eta_0 + a_1 e^{bt}, \tag{6}$$

где $a_1 = a/(20b)$.

Значения коэффициентов a, b, a_1 и η_0 приведены в табл. 2.

Таблица 2

W, %	Θ, °C	Коэффициенты эмпирических формул					
W, %		a·10 ⁻¹³	b	$\eta_0 \cdot 10^{-13}$	$a_1 \cdot 10^{-13}$		
300	-3	0,37207	0,0032471	2,5970	5,7993		
	-8	0,37946	0,0023688	3,5123	8,0095		
	-17	0,23878	0,0017976	2,5319	6,6416		
	-25	0,24816	0,0021304	2,2835	5,8242		
400	-3	0,20154	0,0032603	1,3785	3,0908		
	-8	0,27731	0,0025827	2,3879	5,3686		
	-17	0,26330	0,0018959	2,3188	6,9439		
	-25	0,27924	0,0027862	0,7309	6,5537		
500	-3	0,18061	0,0034760	1,0465	2,7698		
	-8	0,23621	0,0028249	1,9212	4,1808		
	-17	0,20106	0,0020354	2,0148	4,9388		
	-25	0,27967	0,0034677	2,0561	4,0325		
600	-3	0,19488	0,0037580	1,2992	2,5929		
	-8	0,21802	0,0030983	1,6834	3,5184		
	-17	0,13295	0,0021516	1,8830	4,4839		
	-25	0,29035	0,0042402	1,9810	3,4238		

Таким образом, уравнение (4) можно представить в виде

$$W_z = \frac{4qh^3}{3(R^2 + 2h^2)} \int_0^T \frac{dt}{\eta_0 + a_1 e^{bt}}.$$
 (7)

Интеграл в уравнении (7) имеет вид

$$\int_{0}^{T} \frac{dt}{\eta_0 + a_1 e^{bt}} = \frac{T}{\eta_0} - \frac{1}{\eta_0 b} \ln \frac{\eta_0 + a_1 e^{bT}}{\eta_0 + a_1}.$$
 (8)

При вычислении значений этого интеграла размерность времени действия нагрузки (T) – ч, коэффициента η_1 – $H \cdot c/m^2$.

В целях сохранения размерности необходимо интеграл (8) умножить на множитель 3600, т. е.

$$W_z = 3600 \frac{4qh^3 \cdot 2(1+v)}{3(R^2 + 2h^2)} \left(\frac{T}{\eta_0} - \frac{1}{\eta_0 b} \ln \frac{\eta_0 + a_1 e^{bT}}{\eta_0 + a_1} \right)$$

или

$$W_z = \frac{9600 \, qh^3 (1 + \nu)}{(R^2 + 2h^2)\eta_0} \left(T - \frac{1}{b} \ln \frac{\eta_0 + a_1 e^{bT}}{\eta_0 + a_1} \right). \tag{9}$$

Полученное выражение (9) является расчетным при определении осадок фундаментов в заданных температурно-влажностных условиях.

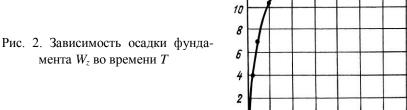

Например, определим осадку фундамента при температуре $\Theta=-3$ °C и влажности W=600 %. Принимаем: толщину расчетного слоя 2h=3 м; интенсивность внешней нагрузки q=0.25 МПа; радиус круглого штампа, соответствующий площади фундамента, R=1,692 м; коэффициент Пуассона торфа v=0.4. Расчетные коэффициенты берем из табл. 2: $\eta_0=1,2992\cdot 10^{13}$; $a_1=2,5929\cdot 10^{13}$; b=0,003758. Задавая различные моменты времени T (ч), получаем осадки фундамента (табл. 3).

Таблица 3

Bpe	мя T	Осадка W_z ,	Bpe	Осадка W_z ,	
дн.	Ч	СМ	дн.	Ч	СМ
0	0	0	50	1200	1,2636
1	24	0,0921	60	1440	1,2739
5	120	0,4073	80	1720	1,2797
10	240	0,6972	100	2400	1,2807
20	480	1,0309	150	3600	1,2809
30	720	1,1770	300	7200	1,2809
40	960	1,2384	360	8640	1,2809

Зависимость $W_{z}(T)$ показана на рис. 2.

Можно отметить, что под воздействием постоянной нагрузки фундамент получает основную осадку в течение первых 50 ... 60 дн., в дальнейшем осадка медленно возрастает, и по истечении 100 дн. она стабилизируется.

Абсолютная осадка существенно зависит от h = H/2, увеличиваясь с возрастанием h. Значение ее имеет тот же порядок, что и найденная при решении линейной задачи по методу упругого полупространства.

Таким образом, применение модели вязко-пластичного тела из мерзлого торфяного грунта более полно отражает реальные физикомеханические свойства массива мерзлого торфа и позволяет определить осадку сооружения в любой момент времени действия нагрузки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Вялов С.С. Реологические основы механики грунтов: Учеб. пособие для строительных вузов. - М.: Высш. шк., 1978. - 448 с.
- 2. Инструкция по проектированию оснований и фундаментов зданий и сооружений, возводимых на заторфованных территориях. СН 475-55. - М.: Стройиздат, 1976. – 14 с.

Архангельский государственный технический университет

20 40 60 80 100 120 T, dh.

Поступила 21.10.02

V.S. Morozov, G.S. Morozov

Calculation of Building Settlement on Frozen Peat Base

A method of calculating settlement of buildings on frozen peat soil base with the use of viscous-plastic body is considered. The results of settlement calculations at any time of load effect are provided.