ЛЕСНОЙ ЖУРНАЛ

1991

УДК 630*585

возможности использования мотодельтапланов для целей исследования лесов

Д. П. СТОЛЯРОВ, В. Н. МИНАЕВ ЛенНИИЛХ

Масштабы использования самолетов и вертолетов для изучения лесов ([1-3, 5, 6, 8] и др.) лимитируются высокой стоимостью летного времени, сложностью обслуживания, дефицитом аппаратов и др. В последние годы шел интенсивный поиск аэроносителей, лишенных многих недостатков, свойственных самолетам и вертолетам. В середине 70-х гг. появились качественно новые типы летательных аппаратов — мотодельтапланы (МДП). Сравнительная простота их конструкции сочетается с несложным обслуживанием. Высокие аэродинамические качества обеспечивают относительно небольшую крейсерскую скорость, достаточную безопасность полетов, а также короткий пробег при взлете и посадке на площадках, не требующих значительной подготовки. Это особенно важно при эксплуатации в неспециализированных организациях, не имеющих аэродромов. Стоимость МДП уже на опытном этапе во много раз меньше, чем самолетов и вертолетов, a стоимость летного времени почти на порядок ниже, чем у самолета.

Для определения принципиальной возможности применения МДП при таксации лесов в 1988—1990 гг. в ЛенНИИЛХе был проведен комплекс исследований, направленных на получение материалов различных видов съемок и изучение результатов их последующей интерпретации.

Для осуществления аэротаксации на основе данных видеозаписи была использована японская видеоаппаратура: съемочная видеокамера с трансфокатором и автодиафрагмированным объективом, видеомагнитофон и цветной телевизор. Применение трансфокатора позволяет выполнять съемки в различных масштабах без изменения рабочей высоты полета МДП. Согласно техническим данным видикона, магнитофона, кинескопа при масштабе записанного статичного изображения на экране около 1:200 расчетное разрешение на местности составляет 15...20 см, т. е. теоретически обеспечиваются достаточно высокие показатели получаемых данных.

При аэротаксации с МДП аэронавигацию и аэровидеозапись ведет специалист-исполнитель по указанным пилоту маршруту и высоте полета. Звукозапись в воздухе дублирует часть показателей и данных, трудно дешифрируемых по видеоизображению и более легко определяемых визуально, а при необходимости записывают номера кварталов, выделов и примечания.

После выполнения аэротаксационных полетов проверяют кондиционность полученных данных. Материалы видеозаписи просматривают в поле на видиконе или на полевом мониторе (второй вариант предпочтительнее, так как записанное изображение демонстрируется крупнее и в цвете). Записи и отметки на полетных схемах проверяют, определяя их полноту и однозначность толкования, и при необходимости дополняют. В дальнейшем в камеральных условиях оценивают и дешифрируют видеозапись.

После оценки качества видеозаписи дешифрируют материалы съемки на основе аэровизуальных признаков по изображению на экране телевизора. При этом желательно, чтобы экран телевизора был сравнительно крупным. Важным требованием к воспроизводящему магнитофону является безукоризненность качества «стоп-кадра» — одного из основных режимов дешифрирования. Рассматривая видеоизображение, исполнитель оценивает заснятые объекты, уточняет границы выделов и записывает определенные по изображению (и частично дублированные звуком) таксационные показатели (как правило, в виде традиционной таксационной формулы).

Результаты аэротаксации сравнивают с истинными — актуализированными данными уточненной наземной таксации. Материалы обрабатывают методами математической статистики. Полученные результаты приведены в таблице.

Таксационные показатели	Показатели точности						
	Безошибоч- ное дешиф- рирование, %	Среднее значение	Системати- ческая ошибка	Средняя квадратич- ная ошибка			
Главная порода: наличие коэффициент состава возраст класс возраста высота диаметр Класс бонитета Полнота Запас	93,20 71,19 83,05 71,19 66,10 58,82 71,19 88,14 72,22	7,05 65,41 3,80 16,12 19,18 2,70 0,71 211,48	$\begin{array}{c}0.78 \\ -4.47 \\ -0.29 \\ -0.97 \\ -0.43 \\ +0.07 \\ +0.02 \\ -10.00 \end{array}$	$\begin{array}{c} \pm 1,776 \\ \pm 11,810 \\ \pm 0,714 \\ \pm 2,101 \\ \pm 3,297 \\ \pm 0,578 \\ \pm 0,102 \\ \pm 40,460 \\ \end{array}$			

Примечание. Безошибочными считались наблюдения с отклонениями не более: коэффициент состава главной породы ± 1 единица, возраст ± 10 лет, высота ± 10 %, диаметр ± 2 см, полнота ± 0.1 , запас ± 20 %.

Результаты точности дешифрирования показывают, что материалы видеосъемки по своему разрешению на местности практически соответствуют аэрофотоснимкам (АФС), имеющим разрешение 0,5...1,0 м.

Выполненные исследования позволяют сделать следующие предварительные выводы.

1. Видеосъемка с МДП и использование ее материалов для целей аэротаксации лесов принципиально возможны.

2. Видеосъемку для целей таксации лесных объектов желательно выполнять в перспективном изображении, так как съемка в надир при отсутствии стереоэффекта не дает возможности определить достаточное число морфологических признаков древесных пород и менее информативна. Кроме того, некоторая обзорность позволяет уточнять границы выделов. Оптимальный угол съемки — около 45° к надиру. При выполнении некоторых работ (учет лесовозобновления, лесных культур и др.) полезна и видеосъемка в надир.

3. Наиболее приемлема высота рабочего полета 150...200 м. Ниже, как правило, усиливается «болтанка», что ведет к ухудшению качества записываемого изображения; при большей высоте чрезмерно уменьшается масштаб изображения. При видеосъемке на указанной высоте основной фокус — короткий. Он вполне достаточен для обеспечения приемлемого масштаба, и изображение на экране относительно устойчиво, что обеспечивает большую вероятность качественного «стопкадра» без смазывания изображения. При необходимости фокус объектива может быть увеличен, но это желательно только при съемке отдель-

ных объектов, поскольку изображение на экране видикона становится очень неустойчивым и демпфирующего влияния рук оператора недостаточно. В таких случаях лучше снизить рабочую высоту полета. Оптимальный масштаб изображения на экране телевизора около 1:200.

4. Видеосъемку следует проводить в солнечную погоду, при которой обеспечивается максимальный для данной видеоаппаратуры цвето-

вой контраст снимаемых лесных объектов.

5. Штатный микрофон видеосъемочной камеры не обеспечивает звукового сопровождения съемки и записывает практически только шум мотора МДП. Поэтому при проведении работ к видеокамере следует подключать внешний микрофон от ларингофона оператора, отключая штатный.

6. Ориентация по хорошо заметным ориентирам маршрута не вызывает затруднений, и опытные пилоты достаточно точно выдерживают

курс.

7. Видеоизображение, полученное при съемке с МДП, значительно менее информативно, чем данные аэровизуального наблюдения. Уменьшается цветовое различие объектов, отсутствует стереоскопичность восприятия, снижается различимость морфологических особенностей деревьев и других лесных объектов, сопоставимость их размеров и пр.

8. Достоверность дешифрирования видеозаписи может быть повышена не только организационными мерами (работа с объектами по фондовым источникам и в натуре, рост числа дешифровщиков), но и в результате увеличения информационных возможностей записывающей аппаратуры.

9. Видеосъемка лесовозобновления возможна в определенных пределах для его оценки и учета с определенной степенью достоверности и

высокой оперативностью.

При аэрофотосъемке с МДП использовали аэрофотоаппарат (АФА) A-39. На МДП навешивали АФА, аккумулятор, командный прибор и кабели питания и управления. В полетах кроме пилота находился оператор. Он руководил ведением МДП по намеченным маршрутам, определял масштаб съемки, указывал высоту полета, устанавливал интервал съемки на командном приборе АФА, контролировал рабочий маршрут визуально и по плановым материалам, включал и выключал АФА по мере необходимости. Аэрофотоснимки (АФС) сверхкрупных и крупных масштабов, полученные без соблюдения этих требований, потеряли бы свое значение вследствие невозможности их последующей наземной «привязки».

После выполнения натурной аэрофотосъемки экспонированные пленки передавали в обработку. Качество аэрофотосъемочных материалов оценивали по принятой методике [4, 7]. Фотоизображение на панхроматической пленке получено хорошего и удовлетворительного качества. После изготовления АФС оценивали их фотограмметрическое и фото-

графическое качество.

Оценка фотограмметрического качества АФС показала: 1) продольное перекрытие не всегда соответствовало нормам (51...70 %). Фактически оно колебалось от 25...30 до 85...90 %, что вызвано значительным неучтенным влиянием ветра на скорость МДП и неточной работой командного прибора. Поперечное перекрытие не определялось, так как съемку вели отдельными маршрутами; 2) непараллельность сторон АФС линиям базисов («елочка») иногда не соответствовала нормам (не более 10°), что также объясняется значительным влиянием бокового ветра, заставляющего пилота для выдерживания маршрута вести МДП под углом к курсу. При этом АФА, закрепленный на МДП, делает снимки под углом к линии маршрута; 3) прямолинейность маршрутов при съемке с МДП в основном соответствует требованиям.

Оценка фотографического качества АФС дала следующие результаты: 1) резкость и проработка деталей в тенях и освещенных местах достаточны по всему полю изображений; 2) плотность и контрастность достаточны и равномерно распределены в центре и на краях АФС; 3) вуаль не препятствует получению качественных АФС; 4) изображений облаков нет, пятна и царапины от проявочной машины не препят-

ствуют дешифрированию, полосатость отсутствует.

Исследованиями установлено, что продольные и поперечные углы наклона АФА (тангаж, крен, рыскание) сравнимы с углами, получаемыми при съемках с самолета АН-2, в связи с тем, что подвесная система МДП, на которой установлен АФА, крепится к крылу через шарнир и при эволюциях крыла в полете нивелируется. Вибрации МДП не оказывают значительного влияния на разрешающую способность системы АФА — пленка. На основании параметров МДП, АФА и пленки расчетная разрешающая способность на местности при съемке в масштабе 1:1000 составляет примерно 3 см.

На основании результатов исследований по возможности выполнения аэрофотосъемки с МДП можно сделать следующие предваритель-

ные выводы.

1. Использование МДП для целей аэрофотосъемки лесов принципиально возможно как на покрытых, так и на не покрытых лесом площадях.

2. Следует предусмотреть специальное амортизирующее крепление $A\Phi A$, которое позволяло бы корректировать его положение относительно продольной оси $M \Box \Pi$ и компенсировать снос ветром, обеспечивая параллельность сторон $A\Phi C$ линиям базисов.

3. При расчете интервалов аэрофотосъемки необходимо учитывать влияние ветра (попутного и встречного) и скорость конкретного МДП.

4. Оптимальное время проведения аэрофотосъемки — до 11 ч и после 16 ч местного времени, когда атмосфера наиболее спокойна. Это позволяет свести к минимуму возможные продольные и поперечные углы наклона АФА и достичь их допустимых значений.

5. При съемке с МДП в благоприятных погодных условиях опытные пилоты выдерживают высоту полета с точностью, соответствующей

точности барометрического высотомера.

6. Ориентация по хорошо заметным ориентирам на маршруте не вызывает затруднений, и опытные пилоты достаточно хорошо выдерживают курс.

7. Для управления АФА желательно наличие оператора на борту, чтобы пилот мог сосредоточиться на точности и равномерности ведения

МДП.

8. При сверх- и крупномасштабной аэрофотосъемке в принципе обеспечивается высокая разрешающая способность.

9. Крупно- и сверхкрупномасштабные АФС, полученные с МДП на

А Φ А А-39, выдерживают увеличение до 5 $^{\times}$.

10. Оценка качества крупномасштабных АФС позволяет судить о принципиальной возможности использования их для целей дешифрирования при исследовании насаждений и возобновления.

11. Для успешного использования АФС, полученных с МДП, следует решить вопрос о возможном дополнении АФА малогабаритным

радиовысотомером с выводом показателей в кадровое окно.

Результаты исследований позволяют сделать общий вывод о принципиальной возможности использования МДП при таксации лесов. В дальнейшем потребуется отработка отдельных методических вопросов, могут быть конкретизированы выводы об оптимальности видов, масштабов, сезонов съемки, вида пленки и других факторов для решения конкретных задач (таксация лесонасаждений, молодняков, обследова-

ние вырубок и пр.) и о возможностях использования МДП в других направлениях.

СПИСОК ЛИТЕРАТУРЫ

[1]. Апостолов Ю. С. Таксация лесов с вертолетов.— М.: ШНИИТЭлеспром. Лесн. хоз-во, 1965.— 333 с. [2]. Аэрокосмические методы в охране природы и в лесном хозяйстве / В. И. Сухих, С. Г. Синицын, Ю. С. Апостолов и др.— М.: Лесн. пром-сть, 1979.— 287 с. [3]. Дворяшин М. В., Кармазин А. У. Лесная крупномасштабная аэрофотосъемка с вертолетов.— М.: Лесн. пром-сть, 1978.— 72 с. [4]. Дмитриев И. Д., Данюлис Е. П., Кропов П. А. Лесная аэрофотосъемка и авиация. Лесотаксационное и лесохозяйственное дешифрирование аэроснимков.— Л.: Изд-во ЛТА, 1976.— 168 с. [5]. Дмитриев И. Д., Мурахтанов Е. С., Сухих В. И. Лесная аэрофотосъемка и авиация.— М.: Агропромиздат, 1989.— 343 с. [6]. Кармазин А. У., Таланцев Н. К. Вертолеты в лесном хозяйстве.— М.: Лесн. пром-сть, 1974.— 120 с. [7]. Руководство по аэрофотосъемочным работам.— М.: Воздушный транспорт, 1988.— 334 с. [8]. Самойлович Г. Г. Применение аэрофотосъемки и авиации в лесном хозяйстве.— М.: Лесн. пром-сть, 1964.— 486 с.

Поступила 25 марта 1991 г.

УДК 630*385.1:630*5

ОЦЕНКА ИЗМЕНЕНИЙ СОСТОЯНИЯ ДРЕВОСТОЕВ СОСНЫ НА ОСУШЕННЫХ БОЛОТАХ

А. С. АЛЕКСЕЕВ, Б. В. БАБИКОВ

Ленинградская лесотехническая академия

Воздействие осущения переувлажненных лесных земель на рост проявляется в течение длительного периода времени, и важно иметь прогноз на будущее. Наши исследования проведены на примере сосновых древостоев на верховом и переходном болотах, осущенных открытыми каналами глубиной около 1 м, при расстояниях между ними соответственно 65 и 130 м. Зольность торфа для этих типов болот составляла 3,5...4,2 и 5...6 %.

Известно, что лесоводственный эффект осушения в значительной степени определяется его нормой. При названных расстояниях между каналами их действие четко прослеживается на всей ширине полосы. Уровень грунтовых вод на верховом болоте посередине между каналами был равен в среднем 27 см (за май—сентябрь), вблизи каналов 32...35 см, на переходном болоте соответственно 50 и 60...65 см, т. е. степень осушения различна.

Поскольку вблизи каналов грунтовые воды опускаются глубже, то и рост леса здесь лучше. Это дает возможность проанализировать рост в сходных лесорастительных условиях при разных уровнях грунтовых вод (табл. 1).

Таблица 1

`Тип болота 🔾	Номер пробной площади	Уровень грунтовых вод, см, по месяцам					
		v	· VI	VII	VIII	IX	средний
Переходное	22	34	53	69	82	82	64
	23, 23a	20	43	66	74	75	55
Верховое	33	21	34	38	41	39	35
	34	14	26	32	34	30	27
	35	19	32	35	40	36	32