- 0,55 удельный выход фурфурола по отношению к пентозанам в условиях данной методики;
 - 5 объем фильтрата, взятый на анализ, мл.

В таблице приведены результаты анализов 7 образцов опилок различных древесных пород по испытуемой и общепринятой методикам. Из сравнения можно сделать вывод, что испытуемые методики обеспечивают в основном удовлетворительную точность анализов; это свидетельствует о правильности подхода к совершенствованию методик.

Порода дре-	Содержание ЛГПС, %, по методике		Отно- ситель-	Содержа- ине П, %, по методике		Отно- ситель-	
весных опилок	обще- прн- нятой	испы- туе- мой	ное расхож- дение, %	обще- при- нятой	испы- туе- мой	ное расхож- дение, %	
Сосна « Кедр Пихта Лиственинца Ель Береза Осина	16,8 18,9 16,2 20,8 16,6 26,2 23,3	16,7 16,9 15,7 20,8 16,5 25,5 23,3	0,6 10,6 3,1 0,0 0,6 2,6 0,0	12,3 7,45 10,2 14,4 9,2 21,6 19,7	12,3 7,45 10,0 14,4 8,9 21,8 19,6	0,0 0,0 1,9 0,0 3,2 0,9 0,5	

При определении ЛГПС описанными методиками удалось сократить продолжительность кипячения с 3 ч до 20 мин, т. е. в 6 раз; соответственно в 6 раз уменьшились затраты энергии (на 1,5 кВт \cdot ч) и воды на обратный холодильник. При определении П экономия по этим же показателям — в 4—5 раз.

ЛИТЕРАТУРА

[1]. Гельфанд Е. Д. Методика определения концентрации пентоз в гидролизных средах // Гидролиз. и лесохим. пром-сть.—1987.—№ 4.— С. 23—24. [2]. Емельянова И. З. Химико-технический контроль гидролизных производств.— М.: Лесн. пром-сть, 1969.—366 с.

Поступила 18 декабря 1987 г.

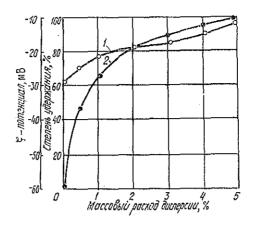
УДК 676.2:537.213

ИССЛЕДОВАНИЕ ФАКТОРОВ ПРОЦЕССА УДЕРЖАНИЯ КАТИОННОЙ ПАРАФИНОВОЙ ДИСПЕРСИИ БУМАЖНОЙ МАССОЙ

П. Ф. ВАЛЕНДО

Белорусский технологический институт

Катионные проклеивающие составы представляют большой интерес для целлюлозно-бумажной промышленности, так как при их использовании проклейку в массе можно осуществить в нейтрально-щелочной среде [2, 3]. Важной проблемой как с технологической, так и с экономической точки зрения является выявление условий максимального удержания проклеивающих веществ целлюлозными волокнами [6].


В настоящей статье приведены результаты экспериментальных исследований по изучению ряда факторов, которые влияют на степень удержания катионных проклеивающих дисперсий бумажной массой.

Для проведения эксперимента использовали беленую сульфитную целлюлозу марки AC-0 и катионную парафиновую дисперсию, полученную ультразвуковым способом. В качестве стабилизатора дисперсии применяли катионное поверхностно-активное вещество (ΠAB) — алкилдиметилбензиламмонийхлорид (алкил C_1 — C_2 0) с массовым содержанием 1 % от абс. сухого парафина. Степень удержания дисперсии

определяли нефелометрическим методом [6], электрокинетический потенциал волокон — методом микроэлектрофореза [5].

На рис. 1 приведены зависимости, отражающие влияние расхода катионной парафиновой дисперсии на электрокинетический потенциал (кривая 1) и на степень удержания парафиновых частиц целлюлозной массой (степень помола — 35 °ШР; кривая 2).

Из рис. 1 следует, что при возрастании массового расхода катионной парафиновой дисперсии до 5 % * ξ-потенциал снижается, однако перезарядки волокон при этом не происходит. Степень удержания парафино-

Piic. 1

вой дисперсии возрастает до 98 %. Полученные зависимости объясняются тем, что исходное содержание катионного стабилизатора недостаточно для достижения изоэлектрического состояния системы и перезарядки волокон. Но при больших расходах дисперсии суммарное количество стабилизатора возрастает, и ξ-потенциал снижается до

Таблица 1
Влияние добавок сернокислого алюминия на степень удержання катионной парафиновой дисперсии и на

§-потенциал бумажной массы

Массовая доля Al ₂ (SO ₄) ₃ × × 18 H ₂ O, %	Степень Удер- жания, %	€ -потен- циал, мВ्
0	57,1	21,5
0,5	68,6	15,9
1,0	77,3	15,5
2,0	89,3	14,5
3,0	92,6	12,0
4,0	93,2	9,8
5,0	97,6	+8,5

Примечание. Во всех случаях массовый расход дисперсии — 1 %.

критических для данной системы величин, при которых силы межмолекулярного притяжения преобладают над силами отталкивания; наблюдается активное электростатическое взаимодействие катионных парафиновых частиц с целлюлозными волокнами и их гетероадагуляция в волокнистой массе.

Это подтверждается данными (табл. 1), из которых следует, что добавка классического коагулянта— сернокислого алюминия— способствует снижению \$-потенциала волокон, проклеенных катионной парафиновой дисперсией в отрицательной области, а при расходе 4 % вызывает перезарядку системы и способствует увеличению степени

удержания проклеивающей дисперсии целлюлозной массой. Процесс проклейки при этом переходит в кислую область. Увеличение массового содержания стабилизатора алкилдиметилбензиламмонийхлорида в дисперсии от 1 до 5 % приводит к повышению удержания ее целлюлозной массой с 43,5 до 96 % (табл 2). Но повышенное содержание гидро-

Таблица 2 Влияние добавок стабилизатора на степень удержания дисперсии бумажной массой

Массовая доля стабилизатора, %	1	2,5	3,0	4,0	5,0	10	15
Степень удержания, %	43,5	43	93,4	93,0	95	96	96

^{*} Здесь и далее — в процентах от абс. сухого волокна.

фильного стабилизатора может нейтрализовать гидрофобизирующее действие парафиновой дисперсии, поэтому такие составы нецелесообразно использовать для проклейки бумаги [7].

В последние годы для придания бумаге повышенной прочности в сухом и влажном состоянии все шире используют катионные добавки конденсационного типа [1, 4]. В настоящей работе их использовали для усиления гетероадагуляции парафиновых частиц на целлюлозных волокнах. В качестве катионоактивных добавок были исследованы меламиноформальдегидная смола (МлФС) и полиаминоэпихлоргидринный волорастворимый полиэлектролит (ПЭВП) (рис. 2)

водорастворимый полиэлектролит (ПЭ́ВП) (рис. 2).
Из рис. 2 следует, что добавки МлФС и ПЭВП позволяют резко увеличить степень удержания парафиновой дисперсии целлюлозными волокнами (степень помола — 14 °ШР). Добавка ПЭВП в количестве 0,1 % позволяет довести степень удержания парафиновой дисперсии до

98 % даже неразмолотой целлюлозной массой.

Сравнивая кривые 1 и 2 рис. 2, можно сделать вывод, что в нейтрально-щелочной среде ПЭВП — более эффективная добавка по сравнению с МлФС. Из рис. 2 также очевидно, что массовое увеличение добавок ПЭВП и МлФС до 2 % приводит к снижению степени удержания парафиновой дисперсии, причем для ПЭВП это проявляется в большей степени. Полученные данные можно объяснить более высокой катнонной активностью ПЭВП и его стабилизирующим действием по отношению к дисперсным частицам при повышенных расходах [1].

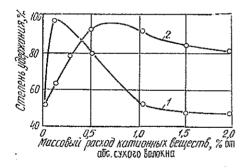


Рис. 2. Зависимость степени удержания парафиновой дисперсии бумажной массой от добавок МлФС (1) и ПЭВП (2)

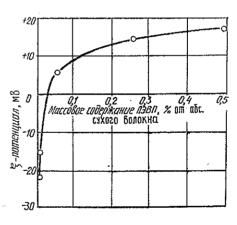


Рис. 3

Таблица 3
Зависимость степени удержания катионной парафиновой дисперсии целлюлозной массой от степени помола и расхода ПЭВП

Мас- совый расход ПЭВП, %	Численные значения степени помола, °ШР, для степени удержания, %						
	16	20	30	40	50		
0 0,1 0,25 0,5 0,7 1,0 1,5 2,0	45,1 98,0 97,5 97,6 72,1 50,8 52,2 49,5 42,0	51,8 96,6 98,5 97,8 97,1 76,1 60,5 55,3 52,3	53,6 100,0 99,1 97,0 97,0 74,6 62,7 52,2 52,2	57,8 97,1 98,6 97,1 97,1 65,1 56,8 52,1 52,4	62,4 100,0 99,1 100,0 97,6 95,5 61,4 54,5 52,4		

На рис. 3 показано влияние добавок $\Pi \ni B\Pi$ на ξ -потенциал проклеенных целлюлозных волокон.

В табл. З приведены экспериментальные данные, отражающие влияние степени помола беленой сульфитной целлюлозы и расхода ПЭВП на степень удержания катионной парафиновой дисперсии (массовый расход дисперсии — 3 %).

Из данных табл. 3 видно, что увеличение степени помола массы и добавки ПЭВП способствуют удержанию дисперсных частиц целлю-

Таблица 4
Зависимость степени удержания катионной парафиновой дисперсии бумажной массой от порядка введения проклеивающих компонентов

Массовый	Степень удержания %, для режима			
расход ПЭВП, %	Nº 1	№ 2		
0 0,1 0,25 0,5 1,0 1,5 2,0	51,8 96,1 97,5 97,5 59,3 52,2 40,9	51,8 98,9 97,5 87,6 50,8 52,2 40,5		

лозной массой. Диапазон эффективности ПЭВП расширяется по мере увеличения жирности массы, что вполне логично и связано с развитием поверхности волокон, их фибрилляцией и увеличением адсорбционной способности целлюлозных волокон.

Для определения оптимального порядка введения в массу проклеивающих компонентов были испытаны два режима. По первому в массу вводили исходную катионную парафиновую дисперсию (перемешивание — 60 с), а затем ПЭВП (перемешивание — 300 с). По второму режиму компоненты добавляли в обратном порядке (табл. 4).

Из данных табл. 4 следует, что порядок введения проклеивающей дисперсии и ПЭВП не оказывает существенного влияния на степень удержания ее целлюлозной массой.

Таким образом, небольшие расходы ПЭВП в количестве (0,1... 0,25 %) позволяют повысить степень удержания катионной парафиновой дисперсии целлюлозными волокнами в оптимальной области расхода ПЭВП до 96... 98 %. Полиаминоэпихлоргидринные водорастворимые полиэлектролиты выпускают в настоящее время под марками «Водамин», Л-14 и могут быть рекомендованы для промышленного применения с целью усиления гетероадагуляции проклеивающих дисперсий в нейтрально-щелочной среде.

ЛИТЕРАТУРА

[1]. Валендо П. Ф. Исследование процесса проклейки синтетическими латексами и катионными водорастворимыми полиэлектролитами: Автореф., канд. техн. наук. — Минск, 1972. — 30 с. [2]. Валендо П. Ф. Разработка рациональной технологии производства бумаги в нейтрально-щелочной среде // Комплексное и рациональное использование лесных ресурсов: Тез. докл. Всесоюз. конф. — Минск, 1985. — С. 284. [3]. Валендо П. Ф., Колесников В. Л., Шевченко Ю. М. Изучение свойств полимерных перезаряжающих агентов латексных проклеивающих смесей // Химия и химическая технология: Республ. межведомств. сб. — Минск: Вышэйш школа, 1975. — № 8. — С. 137—145. [4]. Валендо П. Ф., Кузнецова Ю. М. Проклейка гидрофобизирующими дисперсиями в нейтрально-щелочной среде // Химия и технология целлюлозы и лигиина. — Л.: ЛТА, 1982. — № 9. — С. 112—115. [5]. Валендо П. Ф., Цмыг Н. Г. Исследование изменения электрокинетического потенциала бумажной массы в процессе проклейки гидрофобизирующими эмульсиями // Химия и химическая технология: Республ. межведомств. сб. — Минск: Вышэйш. школа, 1975. — Вып. 13. — С. 115. [6]. Валендо П. Ф., Цмыг Н. Г. Исследование процесса удержания гидрофобизирующих дисперсий бумажной массой // Химия и химическая технология: Республ. межведомств. сб. — Минск: Вышэйш. школа, 1955. — С. 64—68. [7]. Цветков В. Н., Седов А. В. Гидрофобизирующие вещества на неканифольной основе в производстве бумаги и картона: Обзорн. информ. — М.: ВНИПИЭИлеспром, 1980. — С. 4—5.

1988

УДК 630*824.81/85

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КАРБАМИДОФОРМАЛЬДЕГИДНОЙ СМОЛЫ. МОДИФИЦИРОВАННОЙ АЛКИЛРЕЗОРЦИНАМИ

Т. К. ВАРЕС, А. А. ЭЛЬБЕРТ

Таллинский политехнический институт Ленинградская лесотехническая академия

Древесностружечные плиты (ДСП), изготовленные на основе карбамидоформальдегидных смол, включая и смолу марки КФ-МТ, не соответствуют существующим пормам по выделенню и содержанию в них свободного формальдегида. Так как в настоящее время нет заменителей карбамидоформальдегидных связующих, обеспечивающих высокую производительность при прессовании ДСП, то исследователи обращаются к их модификации с целью снижения токсичности материала без ухудшения физико-механических свойств.

Один из вариантов снижения токсичности карбамидоформальдегидной смолы — модифицирование ее сланцевыми алкилрезорцинами (АР). Кинетика реакций АР с формальдегидом достаточно изучена. Показано, что реакционная способность АР в 4,3 раза выше, чем резорцина [2]. Установлено также, что стойкость соединений на карбамидных клеях может быть повышена модифицированием карбамидного полимера алкилрезорциновым олигомером [5].

В данной работе в качестве модификатора карбамидоформальдегидной смолы марки КФ-МТ (ГОСТ 14231—78) была использована выработаниая на Кохтла-Ярмарки К.Ч.-М1 (10С1 14251—76) была использована вырасотанная на кохтла-ярвинском химкомбинате смесь водорастворимых АР следующего состава, %*: резорцин—1,2; 2-метилрезорцин—2,2; 5-метилрезорцин—44,9; 2,5-диметилрезорцин—18,3; 5-этилрезорцин—11,1; 5-метил, 2-этилрезорцин и 4,5-диметилрезорцин—12,7; 2-метил, 5-этилрезорцин—4,5; 2, 4, 5-триметилрезорцин—3,0; неизвестные—2,1. Смолу КФ-МТ как готовый олигомерный продукт модифицировали путем смешивания ее с модификатором при температуре 35...40 °C.

Физико-химические свойства определяли сразу после смешивания с различным количеством АР (табл. 1).

Таблина 1 Физико-химические показатели карбамидоформальдегидной смолы с АР

Содер- жание АР в КФ-МТ,	Вяз- кость по ВЗ-4, с	рН	Продол- житель- пость желати- низации при 100°C, с	Массовая доля сухого остатка, %	Проч- ность клеевого соеди- нения, МПа
0 0,5 1,0 1,5 2,5 5,0	48 53 56 59 62 66 72	7,41 7,34 7,33 7,19 7,18 7,15 6,89	69 73 75 76 78 86 95	65,7 65,8 65,3 64,4 64,4 63,8 63,6	1,55 1,58 1,60 1,60 1,74 1,72 1,51

Продолжительность желатинизации определяли в присутствии 1 % NH₄Cl в виде 20 %-го водного раствора. Прочность клеевого соединения определяли на образцах

^{*} Хроматографический анализ выполнила Х. Раудсепп (ТПИ).