УДК 630*165.6

Р.Т. Гут, М.В. Радченко, Г.Т. Криницкий

Гут Роман Тарасович родился в 1954 г., окончил в 1977 г. Львовский лесотехнический институт, кандидат биологических наук, доцент кафедры лесоводства Украинского государственного лесотехнического университета. Имеет более 50 научных трудов в области физиологии, молекулярной биологии и селекции древесных растений.

Радченко Марта Виталиевна родилась в 1980 г., окончила в 2001 г. Львовский национальный университет им. И. Франка, инженер кафедры лесоводства Украинского государственного лесотехнического университета. Имеет 4 печатные работы в области генетики и биотехнологии микроорганизмов, молекулярной биологии и селекции древесных растений.

Криницкий Григорий Томкович родился в 1944 г., окончил в 1969 г. Львовский лесотехнический институт, доктор биологических наук, профессор, проректор по научной работе, заведующий кафедрой лесоводства Украинского государственного лесотехнического университета. Имеет более 140 научных трудов в области лесоводства, физиологии и селекции древесных растений.

ХАРАКТЕРНЫЕ ОСОБЕННОСТИ ВЫДЕЛЕНИЯ СУММАРНОЙ ДНК ИЗ ЛИСТЬЕВ И ПОЧЕК ДРЕ-ВЕСНЫХ РАСТЕНИЙ ПРИ ИЗУЧЕНИИ ГЕНЕТИЧЕ-СКОГО ПОЛИМОРФИЗМА

Опробованы методы выделения суммарной ДНК из хвои сосны обыкновенной, а также почек и листьев бука лесного. Показано, что метод С.Н. Стюарта и модифицированный СТАВ-метод Дж. Дойла могут успешно применяться при изучении меж- и внутривидовой интрамолекулярной гетерогенности и полиморфизма ДНК.

Ключевые слова: древесные растения, генетический полиморфизм, выделение суммарной ДНК, ПЛР, ISSR-анализ.

Решение современных проблем лесоводства невозможно без знания генофонда основных лесообразующих пород, поскольку состав генов и частота их встречаемости — это эволюционно сложившаяся структура, которая для природных популяций и видов создавалась тысячелетиями. Генетическая структура определяет изменчивость и управляет адаптационными механизмами, позволяя каждой популяции приспосабливаться к условиям внешней среды. Нарушения сложившейся адаптивной генетической структуры и ее уровня могут привести к ухудшению состояния популяций и даже их распаду.

Развитие теории и разработка новых методов лесовосстановления и улучшения растений также связаны с познанием организации и изменчивости генетического материала. Большое значение в этом плане имеют изучение интрамолекулярной гетерогенности и анализ полиморфизма ДНК. Генофонд древесных видов изучен слабо, что связано в основном с отсутствием методов, позволяющих проводить популяционно-генетические исследования. Относительно недавно открыто новое направление методологии установления специфичности геномов при помощи амплификации ДНК с олигонуклеотидными праймерами полимеразной цепной реакцией (ПЦР). Одним из таких методов является использование ISSR-маркеров (Inter-Simple-Sequence Repeat), которое не требует предварительного клонирования и секвенирования фрагментов для подбора праймеров [2, 5].

Наша работа заключалась в исследовании методов выделения суммарной ДНК древесных видов; полимеразной цепной реакции анонимных последовательностей ДНК с использованием ISSR-маркеров; методов анализа дискретных ДНК-продуктов амплификации отдельных участков геномной ДНК в целях изучения меж- и внутривидовой интрамолекулярной гетерогенности и полиморфизма ДНК.

Объектами исследования служили сосна обыкновенная (*Pinus sylvestris* L.) и бук европейский (*Fagus sylvatica* L.), произрастающие на Львовском Расточье. Суммарную ДНК выделяли коммерческими наборами Qiagen DNeasy Plant Mini Kit; Nucleon PhytoPure, plant and fungal DNA extraction kit; СТАВ-методом Дж. Дойла [1] (без центрифугирования в CsCl) и методом С.Н. Стюарта [4]. Материалом для выделения суммарной ДНК сосны служила хвоя, бука — замороженные образцы листьев и почек, которые в течение года сохраняли при температуре -70° С, а также их свежие образцы. Спектрофотометрический анализ ДНК и ее расщепление рестриктазами второго класса с последующим электрофоретическим анализом в агарозном геле проводили согласно стандартным методикам [3]. Полимеразную цепную реакцию изучали с помощью прибора для амплификации Proteus (model FPROGO5H), условия прохождения ПЦР согласно [3] с использованием ISSR-праймеров CR-212 ((CT)₈TG), CR-215 ((CA)₆GT), CR-216 ((GA)₆GG), CR-217 ((GT)₆GG), CR-218 ((GA)₆CC).

На первом этапе определяли оптимальную рабочую фитомассу для выделения суммарной ДНК сосны и бука, для этого использовали образцы свежего материала массой от 0,025 до 0,125 г. Далее образцы ДНК анализировали спектрофотометрическим, рестриктным, электрофоретическим методами и ПЦР, согласно стандартным методикам [3].

Методом спектрофотометрического анализа установлено, что оптимальная фитомасса для выделения суммарной ДНК составляет приблизительно 0,075 \dots 0,100 г. В этом случае концентрация суммарной ДНК сосны при A_{260} равна от 250 до 500 нг/мкл, а чистота препарата $A_{260/280} = 1,6 \dots 2,0$ в зависимости от метода выделения. Для бука концентрация суммарной ДНК при A_{260} составляет 200 \dots 450 нг/мкл, а $A_{260/280} = 1,6 \dots 2,1$ (см. таблицу,

рис. 1). Образцы ДНК, выделенные Kits, чище, а концентрация их вып
--

Метод	Pinus sylvestris L.,		Fagus sylvatica L.			
выделения	хвоя		Листья		Почки	
суммарной	концентра-	чистота	концентра-	чистота	концентра-	чистота
ДНК*	ция, нг/мкл	$(A_{260/280})$	ция, нг/мкл	$(A_{260/280})$	ция, нг/мкл	$(A_{260/280})$
1	300500	1,71,9	230450	1,71,9	250450	1,71,9
2	300500	1,71,9	230430	1,71,9	250450	1,71,9
3	250350	1,62,0	150300	1,62,1	200300	1,62,1
4	250330	1,62,0	150250	1,62,1	200250	1,62,1

* 1 – Qiagen DNeasy Plant Mini Kit; 2 – Nucleon PhytoPure, plant and fungal DNA extraction kit; 3 – модифицированный СТАВ-метод Дж. Дойла [1]; 4 – метод С.Н. Стюарта [4].

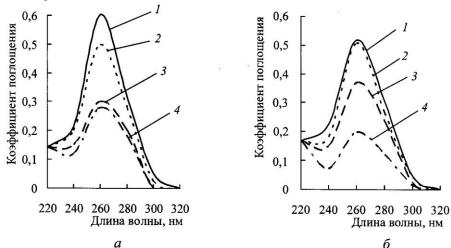


Рис. 1. Пример спектрофотометрического анализа образцов суммарной ДНК почек бука (а) и хвои сосны (б), выделенной разными методами: I — Qiagen DNeasy Plant Mini Kit; 2 — Nucleon PhytoPure, plant and fungal DNA extraction kit; 3 — модифицированный СТАВ-метод Дж. Дойла [1]; 4 — метод С.Н. Стюарта [4]

сравнению с результатами, полученными СТАВ-методом Дж. Дойла [1] (без центрифугирования в CsCl) и методом С.Н. Стюарта [4]. Концентрация суммарной ДНК почек бука на 5 ... 10 % выше, чем в листьях. У замороженных образцов листьев и почек этот показатель на 10 ... 15 % меньше, чем у свежих.

Для определения возможности использования суммарной ДНК при изучении генетического полиморфизма проведен ее анализ эндонуклеазами рестрикции второго класса HindIII и EcoRI. В качестве примера на рис. 2 приведены электрофореграммы рестриктов суммарной ДНК почек и хвои. Показано, что образцы ДНК, выделенные Qiagen DNeasy Plant Mini Kit и Nucleon PhytoPure, plant and fungal DNA extraction kit, расщепляются рестриктазами второго класса лучше, чем выделенные СТАВ-методом Дж. Дой-

ла [1] (без центрифугирования в CsCl) и методом С.Н. Стюарта [4]. Полученные результаты подтверждают данные спектрофотометрического анализа. Опробован также метод ПЦР с использованием ISSR-праймеров CR-212 ((СТ)₈TG), CR-215 ((CA)₆GT), CR-216 ((GA)₆GG), CR-217 ((GT)₆GG), CR-218 ((GA)₆CC). Матрицами служили суммарные ДНК, выделенные указанными методами. На рис. 3 представлены продукты амплификации суммарной ДНК сосны с праймером CR-215 и суммарной ДНК бука с праймером CR-218. Они не однотипны: могут образовываться молекулы с различной молекулярной массой. Обычно размер продукта ПЦР располагается в диапазоне от 300 до 2000 пар нуклеотидов. При использовании Кits ампликоны более четкие, чем при использовании СТАВ-метода Дж. Дойла [1] (без

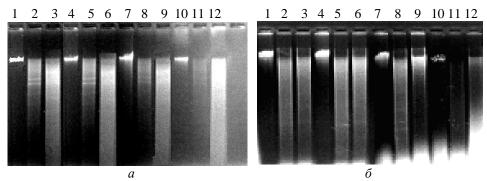


Рис. 2. Электрофореграмма суммарной ДНК почек Fagus sylvatica L. (a) и хвои Pinus sylvestris L. (б), расщепленной рестриктазами второго класса HindIII и EcoRI: 1, 4, 7, 10 — нативная суммарная ДНК, выделенная соответственно Qiagen DNeasy Plant Mini Kit; Nucleon PhytoPure, plant and fungal DNA extraction kit; модифицированным СТАВ-методом Дж. Дойла; методом С.Н. Стюарта; 2, 5, 8, 11 — соответствующие суммарные ДНК, расщепленные рестриктазой HindIII; 3, 6, 9, 12 — то же рестриктазой EcoRI

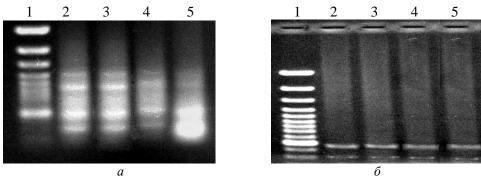


Рис. 3. Продукты амплификации суммарной ДНК Fagus sylvatica L. с праймером CR-218 (a) и продукты амплификации суммарной ДНК Pinus sylvestris L. с праймером CR-215 (б): I – маркер 100 пн; 2-5 – ПЦР продукты матричной ДНК, выделенной соответственно Qiagen DNeasy Plant Mini Kit; Nucleon PhytoPure, plant and

fungal DNA extraction kit; модифицированным СТАВ-методом Дж. Дойла; методом С.Н. Стюарта

центрифугирования в CsCl) или метода С.Н. Стюарта [4]. Однако во всех случаях можно четко идентифицировать продукты амплификации и их размер после электрофоретического анализа в 1,7 ... 2,2 %-м агарозном геле. Полученные данные позволяют утверждать, что СТАВ-метод Дж. Дойла и метод С.Н. Стюарта можно так же успешно применять в работах по изучению генетического полиморфизма, как и Kits (рис. 3). Концентрация и чистота образцов суммарной ДНК, выделенных модифицированным СТАВ-методом Дж. Дойла [1] и методом С.Н. Стюарта [4], а также затраты времени практически те же, что и при применении методов Kits. Однако в экономическом плане значительно выгоднее использовать первые два метода. Необходимо провести дополнительные исследования по подбору условий ПЦР, так как часто появляются неспецифические ПЦР-продукты, что может негативно влиять на последующие эксперименты по изучению меж- и внутривидовой гетерогенности ДНК.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Doyle J.J.* Isolation of plant DNA from fresh tissue / J.J. Doyle, J.L. Doyle // Focus. -1990. N12. P.13-15.
- 2. Fang D.Q. Identification of closely related citrus cultivar with inter-simple sequences repeat markers / D.Q. Fang, M.L. Rose // Theor. Appl. Genet. -1997. Vol. 95. P. 408-417.
- 3. *Maniatis T.* Molecular cloning: A Laboratory Manual / T. Maniatis, E.F. Fritsch, J. Sambrook. NY.: Cold Spring Harbor, 1982.
- 4. *Stewart C.N.* A rapid DNA isolation technique useful for RAPD Fingerprinting and other PCR application / C.N. Stewart, L.E. Via // Bio Techniques. 1993. Vol. 14, N 5. P. 748–749.
- 5. *Tsumura Y*. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (*Pseudotsuga menziensii*) and sugi (*Cryptomea japonica*) / Y. Tsumura, K. Ohba, S.H. Strauss // Theor. Appl. Genet. 1996. –Vol. 92. P. 40–45.

Украинский государственный лесотехнический университет

Поступила 11.07.03

R.T. Guth, M.V. Radchenko, G.T. Krinitsky

Characteristic Features of Total DNA Extraction from Leaves and Buds of Woody Plants when Studying Genetic Polymorphism

Methods of extracting the total DNA from needles of *Pinus sylvestris* and buds and leaves of *Fagus silvatica* have been tested. The method of S. Neal Stewart, modified

CTAB-method of Doyle and Doyle are shown to be successfully applied when studying interspecific and intraspecific intramolecular heterogeneity and polymorphism of DNA.