пром-сть, 1989.— 360 с. [4]. Тиранов П. П., Гельфанд Е. Д., Шульгина Е. В. О целесообразности и эффективности окисления черного щелока, используемого для получения лигнина // Проблемы экологии на Европейском Севере: Сб. науч. тр.—чение и использование // Целлюлоза, бумага и картон: Обзор. инф.— М.: ВНИПИЭИ леспром, 1992.— Вып. 5.—60 с. [6]. Fo'rss K., Pu'rk kinen E. M., Sagfors P. E. Ultrafiltration of Kraft Pre-evaporated Black Liquor after Soap Skimming // Barking, 1986.— P. 325. [7]. Nielsein W. K., Haagensen V. H. Applikation of Specialty Pulps Conference, 1983.— Опубл.: Промышленное применение ультрафильтрации и обратного осмоса // Целлюлоза, бумага, картон: Экспресс-информация // ВНИПИЭИлеспром.— 1985.— Вып. 3.— С. 20—22. [8]. Uloth V. C., Wearing logy and Economics // Pulp and Paper Canada.— 1989.— 90:10.— P. 34—37. [9]. logy and Economics // Pulp and Paper Canada—1989—90:10.—P. 34—37 [9]. Woer; neir D. L., Melarthy J. L. Rejection of Kraft Lignins from Ultrafiltration Vol. 2, Post Present S. 1.—P. 355—360.

Поступила 19 мая 1993 г.

УДК 676.084.2:661.872.9

влияние РАСХОДОВ РЕАГЕНТОВ И УСЛОВИЙ ОБРАБОТКИ НА СВОЙСТВА ЖЕЛЕЗОЛИГНОСУЛЬФОНАТНОГО КОМПЛЕКСА

Ю. Г. ХАБАРОВ, С. В. МАНАХОВА, Л. М. СОФРЫГИНА Архангельский лесотехнический институт

Лигносульфоновые кислоты (ЛСК) содержат, наряду с обычными для лигнинов функциональными группами, кислые сульфогруппы и способны к образованию щелочерастворимых комплексов с металлами переменной валентности [3—5, 7].

(ФЛС) _{ком}. По одному из способов железолигносульфонатный плекс, содержащий до 28 % железа, получают путем обработки щелоч. ного раствора ЛСК раствором соли железа (III) в присутствии сульфит. аниона [1]. Технология получения, роль сульфит-аниона и химизм протекающих процессов детально не изучены.

Нами исследовано влияние расходов реагентов и условий дальней. шей обработки ФЛС комплекса на его свойства. При решении постав. ленной задачи применено планирование эксперимента [2]. В качестве независимых переменных приняты расходы сульфита X_1 , основания X_2 и Fe(III) X_3 (табл. 1). Проведены две серии экспериментов, в которых использованы натриевое и аммониевое основания.

ФЛС комплексы получали в виде растворов. Для их приготовления применяли растворы следующих реагентов:

Декатионированные ЛСК сульфитно-

дрожжевой	бражки	АЦБК	 	 . 51,1 г/л
NaOH			 	 . 200,0 г/л
Na_2SO_3			 	 . 200,0 г/л
NH_3 : .			 	 . 269,5 г/л
$(NH_3)_2SO_3$			 	 7,04 %
Сульфат-нитрат	железа	$\{6\}$	 	 218,0 r Fe(111)/n

В каждом опыте для ФЛС комплекса определяли растворимость в воде, 0,1 н. и 1,0 н. NaOH; рН; потенциал на Рt электроде; выход продукта.

ФЛС комплексы можно использовать в качестве органоминеральных удобрений на щелочных почвах для устранения железистой недо-

Таблица 1 Расход реагентов в процентах (числитель) и граммах ЛСК (знаменатель)

Уровень	<i>X</i> ₁	X ₂	X ₃
-1,682 -1 0 $+1$ $+1,682$	0,0/0,00	0,0/0,00	5,0/0,15
	5,5/0,17	8,5/0,26	12,0/0,37
	15,0/0,46	20,5/0,63	22,5/0,69
	23,5/0,72	32,0/0,98	33,0/1,01
	30,0/0,92	40,0/1,23	40,0/1,23

статочности сельскохозяйственных культур, приводящей к заболеванию хлорозом, резкому снижению урожайности и даже гибели растений [8]. Растворы их должны быть стабильными и обладать хорошей растворимостью в щелочной среде.

Кодир	Кодированные значения		Характеристики ФЛС комплекса	иктеристики ФЛС комплекса Растворимость ФСЛ комплекса.	ж ФЛС	С комп	I .	8			аолица Выход	лица 2
16383	независимых фа	факторов			(що же	железу)	зу) Термообработанный	анный		110- тен- циал	проди	продукта, г
_			исхоп	исходный ооразец	разец		образец		Hd	pact- Bopa		
γ'	, X ₂	χ³	Дис- тилли- рован-	Pactbop NaOH	Bop SH	Дис- тилли- рован-	Pac-	Раствор NaOH	раст- вора	на Рt элек- тро-	B pa- CTBO- De	об- щий
			ная вода	0,1 н.	1,0 н.	ная вода	0,1 н.	1,0 н.	-	MB		
			I	Натриевое		основание					-	
- -	77	Ī ī	100	100	100	100	100	100	1.11	450	4.67	4.67
- -	<u></u>	T	100	301	100	300		333	2.80		5.50	5.50
	-	Ţ.,	100	100	100	100	100		4,65		5.84	5.84
- -	Ī	- -	100	100	ς).	100	100		1,12		6.85	6.85
_	ī -	 -	100	100	11	001	222		1,01		7.31	7,31
-		, -	200	100	01	38	0 14		2,12		01.7	01.7
-1.682	-0	-0	1000	001	1001	100	22		1.68		5,65	5.65
82	0	0	100	100	100	100	40		1,70	_	7,28	7,28
_	-1,682	0	100	100	100	100	36		0.30		5.85	5.85
_	1,682		100	100	100	100	61	_	3,15		7.41	7.41
<u> </u>	o '	1,682	001	100	100	9	100		3,35		4.89	
<u>ب</u>	0	1.682	901	901	77	001	2 		151		8.27	
0	o ·	0	100	100	100	901	40	20	1.61		6.55	
~	O '	O	100	90	92	100	36	40	1,60		99.9	
-	o	<u>۔</u>	9	100	100	100	55		1,60	_	6.88	
•	0	0	100	100	100	100	27	_	1.58	_	6,80	_
•	o (o •	100	100	001	100	27	20	1.56		6.56	6.56
•	>	o -	001	100	100	100	- 1 <u>8</u>	20	1.60	_	6.50	

При реализации продукта важным моментом является концентрирование растворов, для чего может быть использована выпарка. В процессе выпарки продукт подвергается термическому воздействию, поэтому необходимо исследовать влияние нагревания на растворимость комплекса. Для этого растворы $\Phi \Pi C$ комплекса кипятили с обратным холодильником в течение 1 ч.

Результаты экспериментов представлены в табл. 2.

При получении продукта с использованием аммониевого основания во многих случаях наблюдается образование осадка, чего нет у натриевых образцов.

Как видно из приведенных данных, исходные растворы полностью растворимы как в воде, так и в щелочах. Термообработка существенным образом влияет на качественные показатели растворов ФЛС комплексов. Взаимосвязь между расходом реагентов и качественными показателями комплексов выражается в виде полинома второй степени:

	5.47	6.08	5,19	6,53	7,31	7.32	7.92	8,93	6.68	7,38	5.91	7.92	5,12	8,32	6,89	7.51	7.01	96'9	2,00	6.68
	5.43	6.04	5.19	6,35	6.94	7.32	6.38	7.65	6.35	7.38	5.91	6.34	5,12	8.32	6,89	7.51	7.01	96'9	2.00	6.68
	385	316	180	120	471	436	414	380	476	400	453	202	200	456	425	440	431	429	428	430
	2.90	3,90	8.95	8,44	1.99	1,45	3,58	3.20	2,30	1.84	1.79	6.74	6.02	1,85	1,77	1.39	1.78	1.85	1.81	1,95
	100	100	100	100	16	40	100	21	100	75	49	100	100	22	69	7	70	66	74	74
.	100	100	100	100	99,	23	100	20	100	- 19	10	100	100	31	93	93	94	92	94	66
Аммониевое основание	100	100	100	100	100	100	100	100	100	100	2	100	100	=	901	100	100	100	100	180
	100	100	100	100	100	54	15	12	100	100	100	100	100	52	001	100	100	001	100	100
	100	100	100	100	100	35	100	100	100	100	100	100	100	94	100	100	100	100	100	100
Ą	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
•	ī	ī	7	ī				-	0	0	0	0	-1,682	1,682	0	0	0	0	0	0
	- - -	ī	_	-	ī	ī			0	0	-1.682	1,682	0	0	0	0	0	0	0	0
	7	_	ī		ī	,	7	,	1,682	1.682	0	0	0	0	0	0	0	0	0	0
	_	87	က	4	ഹ	9	7	ø	6	10	Ξ	12	13	14	15	16	17	18	19	50

$$Y = b_0 + \sum_{i=1}^{l=3} b_i X_i + \sum_{i=1}^{l=3} \sum_{j=1}^{J=3} b_{ij} X_i X_j.$$

Уравнения регрессии рассчитаны для показателя растворимости в щелочах продукта, прошедшего термическую обработку ($Y_1 - 0.1$ н. NaOH; $Y_2 - 1.0$ н. NaOH), рH раствора ФЛС комплекса (Y_3), потенциала (Y_4), выхода продукта без (Y_5) и с учетом осадка, получаемого на стадии приготовления ФЛС комплекса при использовании аммониевого основания (Y_6).

Результаты вычислений и значения относительной погрешности d

приведены в табл. 3.

Установлено, что ФЛС комплексы на натриевом основании весьма чувствительны к нагреванию. Растворимость их в щелочах сильно снижается, причем в большей степени это прослеживается на разбавлен-

ца З	d, %	<u> </u> 	36 35	50	= 0	က က	67 m	07 m		36	17	12 12	64 63	21 CJ	
Таблиц	b ₃₃		5.2	2.4	0.93	<u>-41,1</u> <u>-40,9</u>	-0.13	0.11		12.6	4.62	0.32	— <u>17.0</u> — <u>17.0</u>	1 10,08	ости.
	p_3		22.3	<u>21,5</u> 21,5	1.54	82.8 82.8	0.78	1.00		$\frac{-17.6}{-17.6}$	$\frac{-16,3}{-16,3}$	-0.41	37.6	1.02	и значимости
	b23 T		85	8.18	16:0—	36.0	0.04	0,26		——————————————————————————————————————	-7.28 -7.28	$\frac{-0.23}{-0.23}$	18.1	1 0.05	осле оценк
егрессии	b ₂₂		—8,99 —8,47	1.05	1.05	40.8	-0,34	-0.04	a)	8,64	8.82	0.17	90'9—	90.00	в знаменателе — после оценки
авнения р	p_2	эснование	13,31	10,99	1.63	—68.2 —68.2	0.04	0.42	основание		<u>6.47</u> <u>-6.47</u>	0.88	$\frac{-26,1}{-26,1}$	0.39	
Коэффициенты уравнения регрессии	<i>p</i> 13	Натриевое основание	—15,4 —15,4	89 1	<u>-0.18</u> -0.18	7.50	-0.02	-0,12	Аммониевое	06.6—	$\frac{-10.7}{-10.7}$	0.39	13.1	0.09	В числителе данные до оценки,
Коэффи	b ₁₂		6.5	- 12	1 0 1	1.25	0.18	0.22	A	23.5	23.2	0.10	—15.6 —15.6	0.06	е данные ,
	119		<u>-7.26</u> -6,74	5,57	0.27	2.26	80.0	0000		2.64	<u>2.22</u>	0.05	3.84	-0.12	числител
	p1 ~		18.9	7.05	-0.08	—23.9 —23,9	0.38	0.30			<u>4.38</u> <u>4.38</u>	0.08	<u>28.0</u> 28.0	0.38	
	<i>b</i> ₀		90.6	66.7	1.73	432 429	7.01	7.00		30.7	48.5	1.59	450	6.67	Примечание
	~		Υ,	Y_2	Y³	Υ,	Y_5	Y_6		Y_1	. Y ₂	Y_3	Y_4	Ys	II.

ных растворах. Наибольшее влияние на растворимость продукта как в слабой, так и в крепкой щелочи оказывает совместное увеличение расходов основания и сульфита. В противоположность натриевым образцам, растворимость продуктов на аммониевом основании, прошедших термическую обработку, с увеличением концентрации щелочи уменьшается незначительно. По-видимому, это можно объяснить конденсационными процессами, которые начинают протекать при растворении препаратов в NaOH, а увеличение концентрации щелочи их ускоряет.

Уравнения регрессии для потенциала раствора на Pt электроде у обоих типов продукта весьма сходны, величины коэффициентов различны, но знаки одинаковы. Повышение расходов основания и сульфита приводит к уменьшению потенциала раствора, т. е. способствует проте-

канию окислительно-восстановительных процессов.

Как потенциал, так и pH растворов ФЛС комплекса определяются соотношением реагентов. С увеличением расхода сульфита и основания возрастает pH раствора, а с повышением расхода Fe(III) как сильно кислого реагента pH снижается.

Выход продукта (по сухому веществу) возрастает при увеличении расхода реагентов. Уравнение регрессии с хорошей точностью (2 %)

позволяет описать его зависимость от расхода.

Расходы реагентов, соответствующие центру плана, близки к оптимальным. Для обоих типов основания в этой точке образуется хорошо растворимый ФЛС комплекс, который в случае использования аммониевого основания при получении не дает осадка. Кроме того, даже термическая обработка при таких расходах сильно не сказывается на растворимости в щелочах аммониевого ФЛС комплекса.

Экспериментальные данные позволяют сделать следующие выводы: при получении ФЛС комплекса с использованием как натриевого, так и аммониевого оснований из разбавленных растворов ЛСК образуются продукты, полностью растворимые в щелочах;

расходы сульфита, щелочи и Fe(III) в центре плана, соответствующие 15,0; 20,5 и 22,5 %, являются оптимальными и приводят к образованию полностью растворимых в щелочах продуктов;

нагревание значительно уменьшает растворимость в щелочах ФЛС комплекса на натриевом основании, комплексы на аммониевом основании более устойчивы к термическому воздействию;

для ФЛС комплекса на натриевом основании предпочтительным является применение концентрированных растворов из полуупаренных лигносульфонатов, для ФЛС комплекса на аммониевом основании можно использовать разбавленные растворы лигносульфонатов с дальнейшим упариванием.

СПИСОК ЛИТЕРАТУРЫ

[1] А. с. 988823 СССР, МКИ С 07 G 1/00; С 07 Г 15/20. Способ получения железолигносульфонатных комплексов / Ю. Г. Хабаров, Г. В. Комарова, Г. Ф. Прокшин (СССР).— № 3282864/23—04; Заявлено 23.03.81. Опубл. 15.01.83. Бюл. № 2 // Открытия. Изобретения.—1983.— № 2.—С. 104. [2]. Богданович Н. И. Расчеты в планировании эксперимента: Учеб. пособие.— Л.: ЛТА, 1978.—80 с. [3]. Сапотницкий С. А. Использование сульфитных щелоков.— М.: Лесн. пром-сть, 1981.— 224 с. [4]. Сарканен К. В., Людвиг К. Х. Лигнины.— М.: Лесн. пром-сть, 1975.—632 с. [5]. Телышева Г. М., Панкова Р. Е. Удобрения на основе лигнинов.— Рига: Зинатне, 1978.—61 с. [6]. Хабаров Ю. Г., Комарова Г. В., Кузнецова Л. Э. Исследование вязкости и плотности продуктов окисления железного купороса азотной кислотой.— Черкасы, 1987.—8 с.—Деп. в ОНТИИХим 14.12.87, № 812. [7]. Чудаков М. И. Промышленное использование лигнинов.— М.: Лесн. пром-сть, 1983.— 200 с. [8]. Могtvedt J. J. Iron sources and management ptactices for correcting iron chlorosis problems // Journal of plant nutrition.— 1986.— V. 9, N 3—7.— P. 961—974.