1,28 от средней высоты с разностью между ними 74 %. В сосняках [3] пределы высот колеблются от 0,69 до 1,16 с разницей между ними 47 %, т. е. на 27 % меньше, чем в ельниках. Ель как более теневыносливая порода значительно дольше может существовать при недостатке освещения и сильном угнетении, чем сосна. Поэтому амплитуда предельных высот у ели шире, чем у сосны. Для древостоев, прореженных рубками ухода, пределы высот еще меньше. А. В. Тюрин [5] по материалам Швейцарской лесной опытной станции для ели, пихты, бука установил предельные высоты от 0,80 до 1,15 с разницей между ними 35 %. Для таежных лесов эти данные не пригодны. Таксацию северных лесов следует проводить по местным нормативам. Таежные ельники имеют более глубокий полог древостоя. Изменчивость высот в северных ельниках по отдельным ступеням толщины и всего древостоя в 2—3 раза больше, чем в древостоях с убранным отпадом. В прореженных древостоях $C_h = 6-12$ % [1].

Таким образом, исследования изменчивости высот показали зависимость ее от возраста, структуры древостоя и региональных природных факторов. Все это необходимо помнить при таксации таежных ельников.

ЛИТЕРАТУРА

[1]. Анучин Н. П. Лесная таксация: Учебн. для вузов.— 5-е изд., доп.— М.: Лесн. пром-сть, 1982.— 552 с. [2]. Гусев И. И. Типы возрастной структуры еловых древостоев Севера.— Изв. высш. учеб. заведений. Лесн. журн., 1975, № 5, с. 5—11. [3]. Левин В. И. К вопросу о строении сосняков Архангельской области.— Тр./ АЛТИ, 1949, вып. 13, с. 193—215. [4]. Плохинский Н. А. Биометрия.— М.: МГУ, 1970.— 368 с. [5]. Тюрин А. В. Строение нормальных насаждений.— В кн.: Лесн. хоз-во, лесопромышленность и топливо, 1923, № 2—3, с. 27—28. [6]. Фалалев Э. Н. Пихтовые леса Сибири и их комплексное использование.— М.: Лесн. пром-сть, 1964.— 166 с.

Поступила 28 февраля 1985 г.

УДК 630*5

ЭМПИРИЧЕСКАЯ ОЦЕНКА ТОЧНОСТИ АЛГОРИТМОВ ТАКСАЦИИ ЗАПАСА ДРЕВОСТОЕВ

Е. И. ЦУРИК

Львовский лесотехнический институт

Проведенная ранее [5] математико-статистическая интерпретация формул для точного определения запаса древостоев показала, что при использовании для этих целей средних арифметических и (или) средних взвешенных значений основных объемообразующих таксационных признаков должны учитываться как их изменчивость в древостое, так и корреляционная взаимосвязь между ними. В частности, была доказана и интерпретировалась следующая формула:

$$M = NG_n H_n F_n K_{g/hf} K_{h/f},$$

где

N — число деревьев в древостое;

 G_n , H_n , F_n — средние арифметические значения площади поперечного сечения, высоты и видового числа древостоя:

 $K_{g/hf}$, $K_{h/f}$ — коэффициенты корректирования произведения средних арифметических величин соответствующих таксационных признаков, учитывающие их изменчивость и взаимосвязь.

Таблица 1	Запас, м ³ на пробной площади на 1 га	311 691 248 620 620 681
	Класс бопитета Полнота	1 0,9 0,8 11 11,0
	Высота пад уровнем моря, м Тип леспого участка	$\begin{array}{c} 1000 \\ C_2 \\ C_3 \\ \hline C_3 \\ C_3 \end{array}$
	Состав	10E + Бк, ед.П Смешанное 10E, ед.П Естественное 10E Естественное
	Тип воз- растной струк- туры древо- стоя	d Nb
	Номер пробной площади Площадь, га	$ \begin{array}{r} 32 \\ 0,45 \\ \hline 0,40 \\ \hline 0,40 \end{array} $

Опытную проверку формул и выявление ошибок таксации запаса древостоев производили по материалам определения объемов и таксационных признаков деревьев ели на пробных площадях со сплошной кой, заложенных в ельниках Карпат (табл. 1). Эти еловые древостои представлены тремя типами возрастной структуры: условно одновозрастными (УО), условно разновозрастными (УР) и разновозрастными (Р). На пробных площадях всплошную срублено и обмерено соответственно 305, 183 и 311 учетных деревьев ели по известной методике [3].

В наших работах [2, 3] уже констатировалось, что с увеличением разновозрастности карпатских ельников меняется местоположение среднего дерева в ранжированном ряду, повышается изменчивость диаметров, высот, видовых чисел и других таксационных признаков деревьев в древостоях, расширяется амплитуда значений редукционных чисел стволов и т. п. [3, с. 56]. Как видно из табл. 2, где приведены результаты дальнейшей математикостатистической обработки материалов указанных пробных площадей, с увеличением разновозрастности древостоев повышается также изменчивость площадей поперечного сечения стволов, их видовых высот и объемов равновеликих по высоте цилиндров. Так, коэффициенты варьирования площадей поперечного сечения стволов с повышением разновозрастности увеличиваются от 46,9 до 67,7 %, видовых высот — от 14,0 до 17,4 %, объемов равновеликих по высоте цилиндров — от 56,0 до 76,5 % и видовых площадей сечения — от 44.0 до 56.4 1%. Характерно, что изменчивость объемов

равновеликих по высоте цилиндров заметно больше варьирования объемов стволов на соответствующих пробных площадях, а изменчивость площадей сечения стволов хотя и несколько меньше, но близка к варьированию их объемов.

Наличие такой взаимосвязи практически позволяет использовать коэффициенты варьирования площадей поперечного сечения деревьев для ориентировочного суждения об изменчивости их объемов. Коэффициенты же варьирования площадей поперечного сечения стволов в древостое могут определяться как обычным способом непосредственной математико-статистической обработки материалов перечета, так и через взаимосвязь их с коэффициентами изменчивости диаметров данной совокупности деревьев в древостое с использованием выведенной нами [4] формулы

Таблица 2

			1 4 0	лица 2	
Показатели	Обо- значе-	Значение показателей для пробных площадей			
	ние	32	33B	1	
Среднее арифметическое значение таксационных признаков $T_n = \frac{1}{N} \sum_{i=1}^N t_i$	H_n G_n F_n HF_n HG_n FG_n O	29,58 0,0710 0,472 13,94 2,198 0,0330 1,020 29,25	28,48 0,0998 0,462 12,99 3,089 0,0441 1,355 34,27	24,21 0,0782 0,452 10,74 2,083 0,0332 0,875 29,85	
Коэффициент варьирования таксационных признаков $C_t = \frac{\sigma_t}{T_n} \ 100$	C_h C_g C_f C_{hg} C_{hg} C_g C_g	12,69 46,91 9,08 13,95 56,03 44,00 53,06	19,27 56,46 11,72 17,39 71,21 48,61 62,97	19,77 67,71 14,09 17,06 76,51 56,40 67,82	
Коэффициент корреляции между таксационными признаками $r_{t p} = \frac{\mu_{t p}}{\sigma_t\sigma_p}$	C_d $r_{g h}$ $r_{h f}$ $r_{g f}$ $r_{h gf}$ $r_{g hf}$	23,81 0,784 0,209 0,364 0,797 0,471 0,344	28,56 0,799 —0,563 —0,638 0,830 0,464 —0,603	34,33 0,427 0,665 0,369 0,795 0,375 0,652	
Среднее взвешенное значение таксационных признаков $T_p = T_n K_{t p}$	r figh Hg Hf Hgf HFg Gh Gf GFh Fg	30,96 29,51 30,90 14,38 2,160 0,0743 0,0699 0,0732 0,0345 0,471	30,95 28,11 30,69 13,58 2,933 0,1085 0,0956 0,1043 0,0476 0,456	26,62 23,77 26,36 11,19 1,937 0,0860 0,0735 0,0815 0,0362 0,444	
Коэффициент корректирования произведения средних арифметических величин в точных формулах таксации запаса древостоев $K_{t p}=1+r_{t p}\frac{C_t}{100}\frac{C_p}{100}$	F_g F_{gh} $K_{g h}$ $K_{h f}$ $K_{g f}$ $K_{h gf}$ $K_{g hf}$ $K_{f gh}$	0,465 0,464 1,0467 0,9976 0,9845 1,0445 1,0308 0,9825	0,442 0,439 1,0870 0,9873 0,9578 1,0778 1,0456 0,9497	0,424 0,420 1,0994 0,9815 0,9388 1,0887 1,0414 0,9297	

 Π римечание. Индексами $g,\ h,\ f$ и их сочетаниями обозначены таксационные признаки соответственно: площади поперечного сечения, высоты, видового числа, видовой высоты и т. д.

$$C_g = 2C_d \frac{\sqrt{1 + A_d \frac{C_d}{100} + \frac{E_d + 2}{4} \left(\frac{C_d}{100}\right)^2}}{1 + \left(\frac{C_d}{100}\right)^2},$$

где C_g и C_d — коэффициенты варьирования площадей поперечного сечения стволов и диаметров стволов соответственно; A_d и E_d — асимметрия и эксцесс ряда распределения числа деревьев по диаметру в древостое.

Из приведенной формулы видно, что коэффициент варьирования площадей сечения стволов зависит не только от коэффициента изменчивости по диаметру, но и от других основных показателей таксационного строения древостоев — асимметрии и эксцесса ряда распределения числа деревьев по данному признаку. Это обстоятельство в известной мере объясняет причину непостоянства места, занимаемого средним деревом в древостое по толщине и по другим показателям. А поскольку изменчивость площадей поперечного сечения в том или ином виде входит в корректирующий коэффициент формулы для точного определения запаса древостоев, то асимметрия и эксцесс ряда распределения числа стволов по диаметру, несомненно, оказывают свое влияние на точность определения запаса древостоя через его таксационное строение.

Наиболее тесная корреляционная связь линейного характера наблюдается между высотами и видовыми площадями поперечного сечения стволов (табл. 2). Взаимосвязь между другими таксационными признаками, характеризуемая коэффициентами корреляции, менее выражена, но является умеренной и значительной [1]. По-видимому, теснота корреляционной связи между этими таксационными признаками также достаточно высокая, но эта связь нелинейная.

Коэффициенты корректирования произведения средних арифметических величин в формулах точного определения запаса древостоев, учитывающие одновременно изменчивость и взаимосвязь таксационных признаков, во всех случаях отличаются от единицы. Наибольшие различия имеют место в разновозрастных ельниках, а наименьшие — в условно одновозрастных. Необходимость учета этих коэффициентов при таксации запаса древостоев хорошо видна из данных сравнения запасов, рассчитанных по различным формулам (табл. 3).

Таблица З

	Номер пробной площадн							
	32		33B		1			
Расчетные формулы	За- пас, м ³	Ошиб- ка, %	За- пас, м ³	Ошиб- ка, %	За- пас, м ³	Ошиб- ка, %		
Сумма объемов стволов По точным формулам $M = NG_n HF_n$ $M = NGH_n F_n$ $M = NH_n GF_n$ $M = NH_n G_n F_n$ $M = NH_n F_n$ $M = NGH_n F_g$ $M = NGF_n H_g$ $M = NG_n H_g F_g$ $M = NG_n H_g F_n$	311 311 302 317 299 303 312 312 312 317 299	0 0 -3,0 +1,9 -4,3 -2,8 +0,1 +0,1 +1,9 -4,3	248 248 237 261 230 240 250 250 250 261 230	0 0 -4,4 +5,3 -7,2 -3,1 +0,7 +0,7 +0,7 +5,3 -7,2	272 272 262 293 250 266 275 275 275 293 250	0 -4,0 +7,6 -8,1 -2,2 +1,0 +1,0 +7,6 -8,1		

Как видно из табл. 3, при определении запасов древостоев по средним арифметическим значениям объемообразующих таксационных признаков без корректирующих коэффициентов допускаются существенные систематические ошибки как с положительными, так и с отрицательными знаками. Так, наибольших отрицательных величин — (4,3—8,1) % достигают систематические ошибки при определении запасов древостоев по средним арифметическим значениям высот и видовых площадей сечения стволов; наибольшие положительные систематические ошибки + (1,9—7,6) % получаются при таксации запасов древостоев по средним арифметическим значениям видовых чисел и объемов равновеликих по высоте цилиндров. Меньшие систематические ошибки допуска-

ются при таксации запасов древостоев по средним арифметическим значениям площадей сечения, высот и видовых чисел стволов — (2,2— 3.1) %, а также по средним арифметическим значениям площадей сечения и видовых высот стволов — (3,0—4,4) %. С увеличением разновозрастности исследованных ельников систематические ошибки заметно возрастают.

Произвольное, необоснованное использование средних взвешенных значений таксационных признаков в формулах для таксации запаса древостоев также приводит к систематическим ощибкам, как меньшим, так и большим, чем при использовании средних арифметических значений (табл. 3). В частности, к уменьшению ошибок до +(0,1-1,0) % приводит замена средних арифметических высот и видовых чисел (Н_п и F_n) на средние взвешенные значения этих таксационных признаков через площади сечения (соответственно H_{σ} и F_{σ}) в следующих расчетных формулах:

$$M = NGH_nF_g;$$
 $M = NGF_nH_g;$ $M = NG_nH_gF_g.$

Однако использование средней взвешенной высоты H_{σ} в формуле $M = NG_n H_\rho F_n$ приводит к увеличению положительных до +(1,9-7,6) %, а использование среднего взвешенного видового числа F_{g} в формуле $M = NG_nH_nF_g$ — к увеличению отрицательных до — (4,3— 8,1) % систематических ощибок.

Таким образом, результаты опытных вычислений запасов древостоев, выполненных по материалам таксации деревьев на пробных площадях со сплошной рубкой, подтверждают теоретические выводы, полученные нами при математико-статистической интерпретации точных формул для таксации запаса древостоев [5]. Использование для определения запаса древостоев средних арифметических и средних взвешенных величин без необходимого математического обоснования приводит к систематическим ошибкам, недопустимым во всех лесотаксационных работах.

ЛИТЕРАТУРА

[1]. Гусев И. И. Вариационная статистика.— Архангельск: АЛТИ, 1970.— 98 с. [2]. Цурик Е. И. Возрастная структура еловых древостоев Украинских Карпат.— Лесоведение, 1974, № 6, с. 19—23. [3]. Цурик Е. И. Ельники Карпат.— Львов: Вища школа, 1981.— 184 с. [4]. Цурик Е. И. О точности методов таксации запаса древостоев.— Львов: ЛЛТИ, 1983.— 36 с.— Рукопись представлена ЛЛТИ. Деп. в ЦБНТИ. лесхоз 3 окт. 1983, № 248лх—Д83. [5]. Цурик Ё. И. Математико-статистическая интерпретация таксации запаса древостоев.— Изв. высш. учеб. заведений. Лесн. журн., 1985, № 6, с. 10—14.

Поступила 4 февраля 1985 г.

УДК 630*181.22

К ПОЗНАНИЮ ПРИРОДЫ МОРОЗОБОЯ

А. К. ДЕНИСОВ, С. А. ДЕНИСОВ

Марийский политехнический институт

Морозобойными трещинами, или морозобоем, поражаются многие древесные породы: осина, ольха, ива, тополь, но особенно часто твердолиственные — дуб, ясень, ильмовые, клен, бук и др.

Морозобой поражает самую лучшую, свободную от сучьев, нижнюю часть ствола деревьев. Резко понижается выход деловой древесины, а нередко, особенно при множественном поражении, ствол переходит в ка-