УДК 547.992.3

ВЛИЯНИЕ ПРИРОДЫ РАСТВОРИТЕЛЯ НА УДЕЛЬНЫЕ ОБЪЕМЫ СУЛЬФАТНОГО ЛИГНИНА

B. B. HEKPACOB

Архангельский лесотехнический институт

Для характеристики состояния макромолекул сульфатного лигнина (СЛ) в растворах предложены [2] следующие удельные объемы: r_2 рефракция, отражающая объемы атомов и связей, образующих макромолекулу; ω2 — несжимаемый объем, занимаемый макромолекулой в растворе; v_{r} — гидродинамический объем, образуемый макромолекулой вместе с сольватной оболочкой, которая удерживает молекулы растворителя водородными связями и силами Ван-дер-Ваальса.

В работе [1] в качестве растворителя СЛ были использованы диметилсульфоксид (ДМСО), диметилформамид (ДМФ), диоксан (Д) и и этиленгликоль ($\Im\Gamma$). Молекулы этих растворителей содержат либо акцепторы (Д, ДМСО, ДМФ), либо доноры ($\Im\Gamma$) протонов.

В настоящем сообщении приведены результаты аналогичных исследований с тетрагидрофурфуриловым спиртом (ТГФС) и метилцеллозольвом (МЦ), содержащими как доноры, так и акцепторы протонов.

Методики приготовления растворов и измерений изложены в работах [1, 3]. Результаты расчетов трех характеристических удельных объемов для ГТФС и МЦ приведены в таблице, где для сравнения представлены данные работы [1].

Из данных таблицы можно сделать предварительные выводы.

. 1. Удельная рефракция в пределах ощибки опыта для всех исследованных растворителей $r_2=(0.2900\pm0.0042)\,$ см 3 /г (0.0042- средняя квадратичная стандартная погрешность, соответствующая относительной погрешности 1,6 %).

2. Удельный несжимаемый объем в пределах ошибки, опыта для всех исследованных растворителей $\omega_2 = (0.804 \pm 0.013)$ см³/г (0.013 средняя квадратичная стандартная погрешность, соответствующая отно-

сительной погрешности 1,6 %).

23.77 3. Удельный несжимаемый объем больше удельной рефракции, их отношение изменяется от 2,45 в МЦ до 3,17 в ДМФ. Это отношение для всех растворителей $\omega_2/r_2=2,75\pm0,11$ (0,11— средняя стандартная квадратичная погрешность, соответствующая относительной погрешности 3,9 %). Согласно модели Ван-дер-Ваальса это отношение равно 4. Для СЛ оно составляет около 3.

Показателн	Численные значения показателей при температуре 20 °C					
	дмсо	дмф	д	эг —	тгфс 7	мц
Удельный объем: г ₂ ω ₂ υ _г ω _{2/г2}	0,280 0,739 3,64 2,64	0,292 0,927 3,20 3,17	0,287 0,847 2,82 2,95	0,287 0,745 1,00 2,60	0,283 0,812 3,36 2,87	0,309 0,756 4,22 2,45

4. Для сольватированного растворителя $\Im\Gamma$ гидродинамический объем υ_{r} представляет простую сумму r_{2} и ω_{2} . В других растворителях этот показатель значительно превышает аналогичную сумму.

5. Значения удельных гидродинамических объемов СЛ в исследованных растворителях резко отличаются и колеблются от 1,00 см³/г в

 $\Im \Gamma$ до 4,22 см³/г в МЦ.

СПИСОК ЛИТЕРАТУРЫ

[1]. Влияние природы растворителя на удельные объемы сульфатного лигнина / Некрасов В. В., Рюмина М. М., Червятина К. П. и др. // Лесн. журн.— 1976.— № 3.— С. 119—121.— (Изв. высш. учеб. заведений). [2]. Не к р а с о в В. В. К вопросу о трех характеристических объемах лигнина в растворах // Исследование продуктов химической переработки древесины.— Архангельск: АЛТИ, 0.1973.— Стр. 61—65. [3]. Не к р а с о в в В. В., Не к р а с о в а Н. В. Исследование энтропии вязкого течения растворов сульфатного лигнина // Лесн. журн.—1991.— № 2.— С. 124—126.— (Изв. высш. учеб. заведений).