ХИМИЧЕСКАЯ ПЕРЕРАБОТКА ДРЕВЕСИНЫ

УДК 676.017

В.И. КОМАРОВ

Архангельский государственный технический университет

Комаров Валерий Иванович родился в 1946 г., окончил в 1969 г. Ленинградскую лесотехническую академию, кандидат технических наук, профессор, заведующий кафедрой технологии целлюлозно-бумажного производства Архангельского государственного технического университета. Имеет более 160 печатных работ в области исследования свойств деформативности и прочности целлюлозно-бумажных материалов.

ДЕФОРМАТИВНОСТЬ ЦЕЛЛЮЛОЗНО-БУМАЖНЫХ МАТЕРИАЛОВ ПРИ РАСТЯЖЕНИИ

Экспериментально показано, что целлюлозно-бумажные материалы являются жесткими и хрупкими. Это позволяет говорить о возможности использования положений статистической теории прочности для оценки качества данных материалов. Выявлено отсутствие однозначной зависимости характеристик $E_{\rm p}$, $E_{\rm n}$ и $E_{\rm 2}$ от начального модуля упругости $E_{\rm 1}$. Показано, что увеличение относительного содержания в материалах коротковолокнистой фракции делает материал более жестким при растяжении. Установлено, что образцы, обладающие различной жесткостью при растяжении, имеют более высокую вариацию начального модуля упругости по сравнению с характеристиками прочности.

It has been shown by experiments that pulp-and-paper materials are stiff and fragile. It allows to speak about the possibility of using the asumed statistic theory of strength for evaluating the quality of the given

materials. The tack of single-valued dependence of E_3 , E_n and E_2 on initial elastic modulus has been revealed. It has been shown that the increase of the relative content of short-fibered fraction makes the material more stiff strain. It has been set up that the samples of different tensile stiffness have higher variation of the initial elastic modulus in comparison with strength characteristics.

В отличие от металлов, пластмасс и композитов для целлюлознобумажных материалов еще не удалось получить применимые в любых случаях и хорошо интерпретируемые законы для прогнозирования зависимости напряжение-деформация. Нам удалось установить не только влияние различных технологических факторов на характеристики деформативности, но закономерности механического поведения ативкив зависимости от величины начального модуля упругости. В данной работе представлены результаты сравнительного исследования влияния основных технологических факторов на характеристики деформативности целлюлозно-бумажных материалов при испытании на растяжение. Оценены величины начального модуля упругости E_1 , разрушающего напряжения σ_p , деформации разрушения є и соотношений между эффективным модулем упругости E_3 , усредненно оценивающим зону замедленно упругого деформирования, модулем упругости материала в точке возникновения пластических деформаций $E_{\rm n}$, модулем упругости в области предразрушеразрушающим напряжением и начальным модулем ния материала E_2 упругости.

Экспериментальные данные представлены в виде таблиц и рисунков.

Влияние вида волокнистого материала. Из табл. 1 следует, что техническая целлюлоза одной марки, полученная на одном и том же производстве, но различным способом (производство 1), существенно отличается по механическим свойствам. В образцах от периодического способа варки возникновение пластических деформаций и рост трещины, приводящий к разрушению, наблюдаются при меньшей величине соотношений $E_{\rm p}/E_{\rm L}$ и E_2/E_1 по сравнению с образцами от непрерывного способа варки. Соотношение σ_0/E_1 , очевидно, можно считать критерием дефектности структуры материала. Теоретическое значение предела прочности хрупкого материала от составляет примерно 0,1 Е. Экспериментально наблюдаемая прочность изменяется в широких пределах, но, как правило, оказывается в 10-100 раз меньше теоретической. Причина подобного ослабления структуры твердого тела - присутствие в нем дефектов или трещин, которые действуют как концентраторы напряжений. Нами установлено, что для целлюлознобумажных материалов реальная прочность в 10-20 раз меньше теоретической.

Таблица 1 Влияние вида материала на его вязкоупругие свойства

Номер произ-	Материал	сп;	I ⊬. I	σ_p	ερ	E_{2}/E_{1}	E_0/E_1	E_2/E_1	$\sigma_v/E_{\scriptscriptstyle m I}$	
водства		l	М	la	%					
1	Хвойная сульфатная небеленая целлюлоза:							-		
	непрерывная варка периодическая варка	25 25	9 315 11 552	73,6 68,9	2,78 1,91	43,4 47,9	33,8 21,3	14,2 6,9	0,79 0,60	
2	Лиственная целлюлоза: небеленая	21	3 113	28,5	1,27	71,9	56,6	39,5	0,92	
	беленая	21	3 884	25,4	1,84	52,4	20,6	7,2	0,65	
3	Сульфитная беленая целлюлоза	30	9 487	38,9	2,2	25,4	12,7	4,7	0,41	
4	Сульфатная беленая целлюлоза:								ł	
	хвойная	22	4 130	19,3	1,65	51,1	-	19,4	0,75	
	лиственная	23 :	4 2 1 0	18,3	1,39	52,0	-	21,1	0,43	
	Хвойная ХТММ	65	2 890	22,3	1,42	58,8	-	25,6	0,77	
	Лиственная ХТММ	65	2 740	23,2	1,35	60,1	-	26,9	0,84	
	TMM	65	2 460	14,0	1,23	62,0	-	26,5	0,57	

^{*} СП – степень помола.

Испытания образцов лиственной беленой сульфатной целлюлозы, произведенной на разных заводах (производства 2 и 4), показали, что, как и в случае хвойной небеленой сульфатной целлюлозы, у образцов с большей величиной E_1 характеристика ε_p и соотношение σ_p/E_1 меньше. При сравнении механического поведения механических масс и технических целлюлоз установлено, что процессы, обусловливающие замедленную упругость и развитие трещины, приводящее к разрушению, наблюдаются при значительно меньших изменениях структуры в силовом поле, а исследуемые соотношения имеют большие значения. Выявлена следующая закономерность: у материалов одного вида с увеличением начального модуля упругости снижается величина соотношения σ_p/E_1

Влияние фундаментальных свойств. В табл. 2 и на рис. 1 представлены результаты испытания образцов, которые в выборках обнаружили максимальные и минимальные величины начального модуля упругости. Образцы с максимальным начальным модулем упругости, как правило, обладали более высокими межволоконными силами связи и средней шириной волокна, но меньшими показателями средней длины и прочности. Более жесткие образцы (кривые 1) содержали относительно больше коротковолокнистых фракций. У всех исследуемых полуфабрикатов более высокое значение начального модуля упругости соответствовало более высоким значениям характеристик прочности.

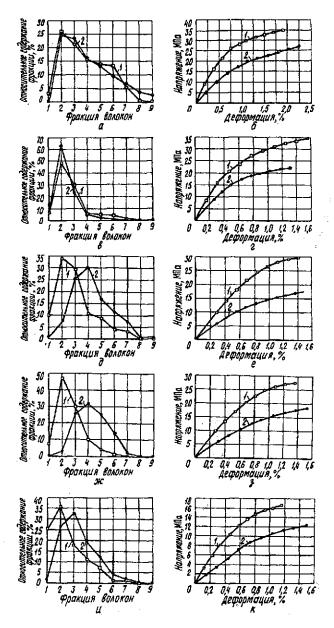


Рис: Фракционный состав $(a, e, \partial, \varkappa c, u)$ и зависимость напряжение—деформация $(6, z, e, 3, \kappa)$ для хвойной (a, 6) и лиственной (e, z) целлюлозы, хвойной (∂, e) и лиственной $(\varkappa c, 3)$ ХТММ и ТММ (u, κ) (кривая I соответствует максимальному, кривая 2 — минимальному модулю упругости (см. табл. 2); фракция волокон: 1 — < 0,6 мм; 2 — 0,6...1,2; 3 — 1,2...1,8; 4 — 1,8...2,4; 5 — 2,4...3,0; 6 — 3,0...3,6; 7 — 3,6...4,2; 8 — 4,2...4,8; 9 — 2 — 2,8 мм)

Таблица 2 Физико-механические характеристики образцов с максимальными и минимальными значениями начального модуля упругости

								·			
	Значения характеристик при E_1 , МПа										
v	Хвойная		Лиственная		Хвойная		Лиственная		TMM		
Характеристики	целлюлоза		целлюлоза		XTMM		XTMM				
	5000	2330	5460	3170	3890	1920	3620	2010	2460	1250	
Фундаменталь-							·				
ные:											
F_{cs} , МПа	1,25	1,12	0,89	0,90	1,23	1,06	1,29	0,96	1,09	0,79	
SV , M Π a	3,10	2,88	2,23	2,30	3,38	3,39	3,73	3,06	3,87	2,87	
F_z , Дж/м 2	201	152	124	.111	150	136	138	117	102	103	
L_0 , M	2990	3010	2450	2080	2140	2490	1910	2620	1830	2000	
V , cm ³ / Γ	1,59	1,65	1,61	1,63	1,76	2,05	1,85	2,05	2,28	2,33	
$l_{\rm cp}$, mm	1,91	2,18	1,36	0,90	1,49	2,25	1,25	2,28	1,20	1,71	
d_{cp} , MKM	40,9	28,4	31,8	29,8	46,7	34,4	33,6	41,4	46,3	43,1	
Прочностные:	İ										
<i>P</i> , H	46,4	39,0	42,7	29,5	41,0	27,4	39,3	31,0	26,0	21,0	
L, m	5900	4990	5610	3910	5250	3800	5020	4210	3320	2750	
$σ_p$, ΜΠ a	35,0	28,0	34,0	23,8	31,1	17,1	28,5	18,7	16,6	12,3	
A_{p} , мДж	63,7	54,6	47,4	23,9	35,6	25,5	33,1	28,1	19,2	19,0	
P_{zc} , M/c	2,04	1,76	1,82	1,48	1,62	1,48	1,56	1,52	1,58	1,60	
P_{zB} , M/c	2,20	1,90	2,00	1,90	2,20	1,50	2,20	2,00	2,40	2,16	
<i>N</i> , ч.д.п.	100	27	27	4	9	8	6	8	2	5	

Таблица 3 Влияние фракционирования на вязкоупругие свойства материала

20110111	ю франц	поппрова		u Dhii	-Jupji	me ebe) II Ç I 13 A	marep	11 11 11 11 11 11	
Материал	Степень помола,	Фракция	l _{cp} ,	E_1	σ_p	$\epsilon_{\rm p}$	E_y/E_1	$E_{\mathbf{r}}/E_{1}$	E_2/E_1	σ_p/E_1
	°UIP	_	мм	MΠa		%				
Сульфатная	25	*	1,20	5412	71,0	2,52	55,7	53,8	35,8	1,39
небеленая		1	1,60	4927	59,5	2,16	69,4	65,4	50,5	1,25
целлюлоза		2	1,35	5699	73,6	2,36	53,7	51,8	33,8	1,32
		3	1,01	4048	68,0	2,52	71,6	69,9	44,7	1,78
	45	*	0,51	4441	68,5	2,44	65,9	65,9	33,5	1,58
		1	0,44	4429	61,5	2,24	66,3	64,9	32,3	1,50
		2	0,37	6820	46,0	1,56	45,2	42,7	32,3	0,77
		3 -	0,25	6294	74,6	2,48	46,0	44,2	22,9	1,23
Сортиро-		*	1,50	1106	5,9	1,16	52,7	35,5	16,4	0,55
ванная ТММ		1	1,77	127	0,8	1,28	52,5	55,0	27,7	0,66
после допол-		2	1,23	324	1,4	0,85	54,8	40,2	25,4	0,43
нительного		3	0,60	871	3,8	0,88	44,7	42,4	23,5	0,44
размола		4	0,30	2547	14,5	1,35	49,5	39,5	17,3	0,57

^{*} Нефракционированный материал.

Влияние фракционирования. В табл. 3 приведены данные исследований образцов нефракционированной целлюлозы и исходной ТММ, а также выделенных из них фракций с различной средней длиной волокна, подвергнутых размолу. Из табл. 3 следует, что наиболее четкие закономерности изменения исследуемых характеристик наблюдаются у механической массы по сравнению с технической целлюлозой. Снижение средней длины волокна у ТММ с переходом от фракции 1 к фракции 4 приводит к возрастанию начального модуля упругости и прочности, при этом наблюдается тенденция к повышению деформации разрушения. Изменения в структуре, способствующие возникновению замедленно упругой и пластической деформаций и росту трещины, приводящему к разрушению, при переходе от фракции 1 к фракции 4 наблюдаются при возрастающем механическом напряжении. У технической целлюлозы лучшие деформационные свойства отмечены у фракции 2. Характер изменения соотношений E_3/E_1 , E_6/E_1 и E_7/E_1 зависит от степени помола.

На рис. 2 показано влияние различных технологических факторов на исследуемые характеристики сульфатной небеленой целлюлозы, размолотой до 25 °ШР, и флютинга. Кривые I, характеризующие изменение E_1 , показывают, что с увеличением степени помола начальный модуль упругости

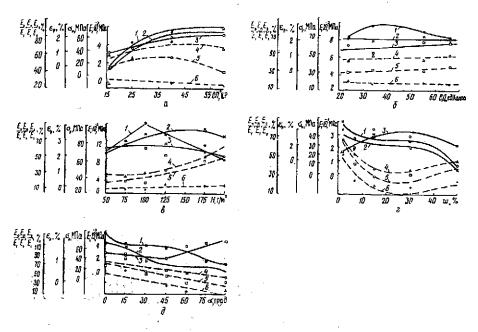


Рис. 2. Влияние степени помола (a), степени делигнификации (б), поверхностной плотности (в), абсолютной влажности (г), степени ориентации волокна (д) на характеристики целлюлозы $(a-\varepsilon)$ и флютинга (д): l — начальный модуль упругости E_1 ; 2 — разрушающее напряжение σ_p ; 3 — деформация разрушения ε_p ; 4 — отношение E_2/E_1 ; 5 — E_n/E_1 ; 6 — E_2/E_1

монотонно возрастает. При повышении содержания остаточного лигнина кривая имеет положительный экстремум в области 35...40 ед. Каппа, при увеличении массы 1 м^2 также наблюдается положительный экстремум в области 100 г/m^2 . Изменение абсолютной влажности с 2 до 7 % за счет роста содержания адсорбционно связанной влаги вызывает снижение E_1 на 30 %, изменение влажности с 7 до 30 %, вызванное накоплением осмотически связанной влаги, не отражается на E_1 – кривая выходит на плато при абсолютной влажности 50 %. Следовательно, наличие влаги, связанной с волокном физико-механическим способом, приводит к дальнейшему снижению E_1 . Переход от машинного направления к поперечному в образце флютинга снижает E_1 на 52 %. Изменение величин σ_p и ε_p (кривые 2 и 3) протекает с определенным соответствием с кривой I только в случае меняющейся степени помола волокна. В остальных исследуемых случаях ход кривых 2 и 3 отличается большим разнообразием.

Ход кривых 4 и 5 для всех образцов идентичен. С увеличением степени помола до 40...45 °ШР относительные величины характеристик E_9 и E_π повышаются, а при дальнейшем росте этого показателя снижаются. Увеличение содержания остаточного лигнина вызывает незначительные изменения соотношений для 4 и 5. Рост массы 1м² приводит к увеличению этих соотношений. Повышение абсолютной влажности, вызванное адсорбционно и осмотически связанной влагой, значительно сказывается на величине соотношений E_2/E_1 и E_0/E_1 , приводя в дальнейшем к некоторому их росту. Переход от машинного направления к поперечному в образце бумаги промышленного производства (т.е. уменьшение степени ориентации волокон в испытуемом образце) снижает численные значения этих соотношений. Относительный уровень величины E_2 (кривая 6) при изменении степени помола, содержания остаточного лигнина и массы 1 м² может как снижаться, так и возрастать. Изменение относительной влажности и степени ориентации волокон больше влияет на E_2/E_1 , чем степень делигнификации и степень помола волокна технической целлюлозы.

В табл. 4 представлены данные о влиянии многослойности на механическое поведение образцов сульфатной небеленой целлюлозы. Отметим, что физико-механические характеристики в сильной степени зависят от степени помола волокна. При невысокой степени помола улучшение исследуемых характеристик наблюдалось только у образцов с массой 60 г/м², состоящих из двух слоев. Возрастают начальный модуль упругости, прочность и деформация разрушения. Процессы, которые вызывают замедленно упругую и пластическую деформации и рост трещин, приводящий к разрушению, у многослойных образцов наблюдаются при более высоких, чем у однослойных, напряжениях.

Анализ полученных экспериментальных данных показывает, что начальный модуль упругости целлюлозно-бумажных материалов превышает принятый для жестких полимеров минимум, равный 10³ МПа.

Таблица 4 Влияние многослойности на вязкоупругие свойства материала

Степень помола, ШР°	Число слоев	Macca 1 м², г/м²	E ₁	σ _p Πa	$\epsilon_{ m p}$	E_3/E_1	<i>E</i> ₀ / <i>E</i> ₁	E_2/E_1	σ _p /E ₁
20	1	30	8 882	73,7	1,68	48,1	42,6	22,9	0,85
		60	11 903	73,1	1,56	53,4	31,1	16,4	0,63
		90	14 272	104,0	1,76	51,7	28,9	14,6	0,76
		120	11 192	94,7	1,88	50,5	36,2	13,3	0,85
	2	60	16 253	89,0	1,84	34,7	22,0	11,0	0,56
	3	90	12 869	100,0	1,96	52,1	29,5	12,5	0,84
	4	120	11 376	102,0	2,12	54,0	49,8	19,5	0,97
35	1 1	30	12 074	66,9	1,52	44,3	28,8	17,6	0,56
	Į į	60	13 637	78,8	1,52	46,2	30,6	15,7	0,62
		90	12 034	100,0	2,08	51,0	30,1	13,8	0,88
	ļ	120	9 986	93,9	1,72	58,9	50,9	32,0	1,05
4	2	60	11 389	89,0	1,84	50,2	34,1	16,6	0,79
	3	90	9 686	90,5	1,96	57,8	32,1	15,6	0,94
	4	120	8 944	97,6	1,96	65,3	55,0	19,4	1,15

^{*} Масса каждого слоя в многослойном материале составляет 30 г/м².

Вид зависимости напряжение—деформация при соблюдении условия $\sigma_p \approx (0.01...0.001)E_1$ свидетельствует, что исследуемые материалы можно считать жесткими и хрупкими. Установленные закономерности позволяют предположить возможность использования положений статистической теории прочности для оценки качества данных материалов. Выявлено отсутствие однозначной зависимости характеристик E_2 , E_1 и E_2 от начального модуля упругости E_1 . Показано, что увеличение относительного содержания в структуре материалов коротковолокнистой фракции повыщает величину начального модуля упругости, делает их более жесткими при растяжении. Установлено, что образцы, обладающие различной жесткостью при растяжении, значительно отличаются начальным модулем упругости, а не характеристиками прочности.

Поступила 12 ноября 1998 г.