Переменными факторами являлись: высота пропила и скорость подачи заготовки (подача на резец). При исследовании гидравлического и пневматического механизмов в качестве переменного фактора рассматривали и первоначальное натяжение полотна ленточной пилы.

Величину подачи на резец (u_z) изменяли от 0,2 до 0,6 мм, высоту пропила (H) — от 100 до 200 мм, первоначальное натяжение пилы — от 60 до 100 МПа. При изучении работы рычажно-грузового и пневмогидравлического механизмов первоначальное натяжение оставалось постоянным и составляло 80 МПа. Пила имела толщину S=1 мм и ширину B = 85 мм.

В процессе распиловки контролировали разнотолщинность полученных пиломатериалов. Толщины пиломатерналов измеряли штангенциркулем через каждые 100 мм.

На рисунке представлены зависимости вероятного количества пиломатериалов (N), разнотолщинность которых не превышает ± 1 мм, от высоты пропила (кривая 1 при $u_z=0.4$ мм) и скорости подачи (кривая 2 при H=150 мм) для четырех типов механизмов натяжения ленточной пилы: рычажно-грузового (рис. a), гидравлического (рис. δ), пневматического (рис. a), пневмогидравлического (рис. a).

На основании полученных данных можно сделать вывод, что пневмогидравлический механизм патяжения обладает наилучшими динамическими свойствами и обес-

печивает максимальную точность получаемых пиломатериалов.

СПИСОК ЛИТЕРАТУРЫ

[1]. Веселков В. И., Исупова Т. С. Экспериментальная установка для исследования динамики механизмов резания ленточнопильных станков // Лесн. журн.— 1981.— № 3.— С. 78—82.— (Изв. высш. учеб. заведений). [2]. Новосельцев В. П., Селезнев А. Ф. Влияние изменения силы натяжения на динамическую устойчивость рамных и ленточных пил // Лесн. журн. — 1974. — № 6. — С. 75—76. — (Изв. высш. учеб. заведений).

УДК 630*377.2

СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМА ПАЧЕК ХЛЫСТОВ по нагрузке в грузовом канате

А. С. СМЕТАНИН, А. П. БРАГИН

Архангельский лесотехнический институт

При поставке хлыстов на перерабатывающие комбинаты необходимо вести приемку и учет сырья в кубометрах. Здесь возникают определенные сложности, вызванные специфическими условиями поставки. Не редкость, когда одному потребителю хлысты поставляют несколькими видами транспорта с различной продолжительностью нахождения в пути. Свежесрубленную древесину часто поставляют вместе с древесиной из технологических запасов верхнего и нижнего складов, а лесосырьевые базы значительно отличаются друг от друга таксационными характеристиками лесонасаждений (породный состав, средний объем хлыста, бонитет, возраст, содержание дровяной древесины, толщина коры и т. д.).

Большое значение имеет и оснащенность складов сырья подъемно-транспортным оборудованием. Немало предприятий осуществляют выгрузку пачек хлыстов из воды лебедками, что затрудняет или делает невозможным приемку и учет древесины по ОСТ 13—83—80 и ОСТ 13—75—79.

Анализ известных способов и средств приемки и учета древесины при выгрузке пачек из воды дебедками показывает следующее:

индивидуальный учет требует поштучного отделения и обмера каждого хлыста, что выполнять практически сложно;

пересчет количества хлыстов и умножение их на средний объем по таксационным или документальным данным дает значительную ошибку;

геометрический обмер пачек невозможен по условиям техники безопасности, применение же стационарных рамок неэффективно с эксплуатационной точки зрения из-за высокой капиталоемкости и трудоемкости операции;

обмер пачек хлыстов в ваннах по объему вытесненной жидкости также требует

наличия кранов большой грузоподъемности.

Для лесопильных и деревообрабатывающих предприятий, получающих древесину в хлыстах сплавом и выгружающих их лебедками, предложен способ определения объема пачек по нагрузкам в тяговом органе. Он основан на измерении усилий, возникающих в грузовом канате лебедки, которые пропорциональны объему выгружаемых из воды пачек хлыстов. Масштаб объема можно определить опытными раскряжевками и найти по формулам

$$\mu_v = V/F_H$$
; $\mu_{\rm cp} = (\Sigma \mu_v)/n$,

где _V — объем раскряжеванной древесины в пачке;

 $F_{\rm H}$ — усилие в канате при выгрузке пачки;

п — количество раскряжеванных пачек.

В соответствии с технологией для межнавигационного запаса пачки хлыстов укладывают в беспрокладочные штабеля высотой до 8 м. Грузовой канат от начала и до конца формирования штабеля проходит через блок на высоте до 8 м (см. рисунок).

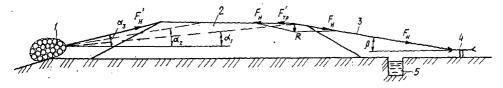


Схема сил, действующих на грузовой канат при формировании штабеля из хлыстов: 1 — пачка хлыстов; 2 — штабель; 3 — грузовой канат; 4 — направляющий блок; 5 — гидролоток

Усилие нагружения в тяговом канате $F_{\rm II}$ можно найти по формуле

$$F_{\rm H} = F'_{\rm H} + 2F'_{\rm TP} + (G_{\rm r.~K} + G_{\rm x.~K}) f_2$$

где

 $F_{\rm H}^{'}$ — усилие в наклонной ветви каната,

$$F'_{\rm H} = F_{\rm TP}/\cos\alpha = V \rho f_1;$$

F_{тр} — сила трения пачки бревен по направляющим;

α — угол наклона каната на участке выгрузки;

V — объем выгружаемой пачки хлыстов;

Р — плотность древесины в хлыстах;

/i — коэффициент трения между хлыстами и направляющими подкладками;

 $F_{\rm TP}^{'}$ — сила трения каната о бревна,

$$F_{\rm rp}'=f_2R;$$

 f_2 — коэффициент трения между канатом и хлыстами; R — сила давления каната при огибании штабеля,

$$R = \frac{F_{H}'\cos(\beta/2)}{\sin\beta};$$

eta — угол наклона каната на участке от штабеля к лебедке; $G_{\rm r,\,\kappa}$, $G_{\rm x,\,\kappa}$ — вес грузового и холостого канатов.

Обозначим

$$\begin{split} F_{\rm H}\mu_{\rm cp} &= V_{\rm p}; \quad F_{\rm Tp}\mu_{\rm cp} &= V_{\rm p}; \\ \cos\alpha &= k_1 = {\rm const}; \\ 1 &+ \frac{2\cos{(\beta/2)}}{\sin\beta} \ f_2 &= k_2 = {\rm const}; \\ \left(G_{\rm r.~K} + G_{\rm x.~K}\right) f_2\mu_{\rm cp} &= k_3 = {\rm const}. \end{split}$$

Здесь $V_{\rm p}$, $V_{\rm \phi}$ — расчетный и фактический объем пачки. Тогда

$$V_{\rm p} = V_{\rm ch} k_2/k_1 + k_3$$
;
 $V_{\rm ch} = (V_{\rm p} - k_3) k_1/k_2$.

Расчеты, проведенные для крупномасштабной модели штабеля, а также экспериментальное определение коэффициентов сопротивления перемещению древесины в коре по направляющим в условиях, приближенных к производственным, показали возможность получения достаточной точности обмера хлыстов при небольших колебаниях усредненной влажности выгружаемой партии древесины. При практическом применении этого способа в целях избежания многократных опытных раскряжевок для определения масштабного коэффициента необходимо, чтобы угол наклона α направляющих, при перемещении по которым определяют и фиксируют сопротивление, был постоянным для всех участков выгрузки склада и не менее угла α_3 .

Общая организация работ и учета может быть следующей. Стационарные или нестационарные направляющие устанавливают на участке выгрузки пачек из воды под углом α к горизонту, который должен быть больше или равным α_3 . К покатам крепят конечный выключатель для сигнализации о нахождении пачки и включения фиксирующей сопротивления перемещению аппаратуры. При формировании штабеля первые пачки подтягивают к гидролотку и раскряжевывают для определения масштабных коэффициентов. Поскольку углы α и β и коэффициенты трения f_1 и f_2 постоянны для конкретных условий работы, то несложно вычислять коэффициенты k_1 , k_2 и k_3 и определять фактические объемы выгружаемой древесным по нагружению каната. В настоящее время аппаратура, разработанная ЦНИИлесосплава, обеспечивает беспроводими операции операции. ную передачу сигналов от тензодатчиков в приемное устройство с их фиксацией.

УДК 547.992.3

ИССЛЕДОВАНИЕ ЭНТРОПИИ ВЯЗКОГО ТЕЧЕНИЯ РАСТВОРОВ СУЛЬФАТНОГО ЛИГНИНА

B. B. HEKPACOB, H. B. HEKPACOBA

Архангельский лесотехнический институт

При исследовании растворов сульфатного лигнина (СЛ) установлена определенная корреляция между энергией активации вязкого течения и степенью сольватации [3—5]. Общая закономерность сводится к следующему: с ростом энергии активации

степень сольватации СЛ убывает. В настоящей работе определены плотность (ρ), вязкость (η) и скорость распространения ультразвука (U) для СЛ в диметилформамиде (ДМФ), 1,4-диоксане (Д), диметилсульфоксиде (ДМСО), тетрагидрофурфуриловом спирте (ТГФС), метилцелло-

зольве (МЦ), этиленгликоле (ЭГ).

Исследования проведены на растворах промышленного СЛ, очищенного по методике [6], с массовыми концентрациями от 0 до 8 % в интервале температур от 20 до 80 °С. Плотность определяли пикнометром, вязкость — вискозиметром Оствальда, в котором время истечения растворителя при 80 °С было не менее 80 с. Скорость распространения ультразвука находили на комплексной установке при частоте 1,8 МГц с точностью до 0,5 % [5].

Из шести растворителей с двумя (ТГФС, МЦ) наблюдали небольшие аномалии. Лля установления причин аномалий мы воспользовались положением [8, 9] о том, что на состояние макромолекул лигнина в растворах заметное влияние оказывает струк-

тура растворителя.

О структуре растворителей и растворов можно судить по величине энтропии активации вязкого течения. В основу исследования энтропии активации вязкого течения положен закон Френкеля — Эйринга

$$\eta = A \exp\left[-\Delta S/R\right] \exp\left[(\Delta H/R)(1/T)\right],\tag{1}$$

A — коэффициент;

ΔS — энтропия активации вязкого течения;

ΔН — энтальпия активации вязкого течения;

R — универсальная газовая постоянная;

Т — абсолютная температура.

Коэффициент А оценивали из соотношения [7]

$$A = N_{\rm A} h / V_{\rm p}.$$

Злесь $N_{\hat{\mathbf{A}}}$ — число Авогадро; h = постоянная Планка; $V_{\mu} =$ мольный объем.

Принимая для чистых растворителей при 20 и 80 °C $A=10^{-6}$ Па · c, что соответствует вязкости при $T \to \infty$ в газообразном состоянии, выражение (1) после логарифмирования представим в виде линейного уравнения:

$$\ln (\eta/A) = -\Delta S/R + (\Delta H/R)(1/T).$$

Обозначив $b=-\Delta S/R$ и $c=\Delta H/R$ и используя стандартную программу метода наименьших квадратов на ЭВМ «Искра 1256», определили коэффициенты b и c. Результаты расчетов представлены в таблице. Данные по сольватации при 20 °C взяты из работы [5].